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Research interests in our group

•Semi-analytical model for galaxy formation
•Numerical simulation of galaxy cluster
•N-body simulation of galaxy merger
•Large scale structure analysis
•Gravitational lensing (strong + weak)



Outline

• Structure formation 

• Models for galaxy formation

• Several types of galaxy distribution

• milky way as a local lab

• Summary



  



  

The Universe is also expanding 7% slower than before and is
80,000,000 years older!



linear perturbation theory

Z~100Z~1000 (∆T/T~10-5 ) Z=0

N-body Simulation

Non-linear



large scale small scale

Gravitational instability is the driver of structure formation

structure formation in N-body simulation



冯珑珑等: 现代宇宙学中的数值模拟技术和应用

Peebles[72] 利用 300个粒子对星系团的模拟, 以及宇
宙学意义上的 1500个粒子的模拟 [73]. 随后的 40余
年,伴随计算机技术的日益进步,宇宙学数值模拟更
获得了突飞猛进的发展.迄今为止, N 体数值模拟已

接近 Peta 量级, 它对我们追踪宇宙大尺度结构的形
成和演化, 从矮星系到星系团的各级尺度上研究暗
晕的结构、质量函数、吸积和并合历史、空间成团

性以及和环境的相关性等提供了一个强有力的工具.
图 1通过模拟粒子数 –年代关系粗略给出了 N体数

值模拟的发展历程; 图 2 为中国计算宇宙学联盟完
成的盘古模拟的可视化图像,它绘制了红移 z = 0时
暗物质的分布以及不断放大的质量为 3.0× 1015 M⊙

的星系团.
在面向下一代巡天的暗物质和暗能量探测研究

中, N 体数值模拟扮演了关键性的角色,其重要性主
要包括以下方面: (1)有助于我们探讨在不同暗能量
模型下的结构形成过程, 并发展新的分析手段以区
分和排除不同的暗能量模型; (2)由于成团过程的高
度非线性, 数值模拟是评估这类大型试验中各种统
计误差和系统偏差如何影响宇宙学信息提取的最可

靠方法; (3)数值模拟可以被用于仿真实际观测过程
(输入背景源发射光子、大气扰动、望远镜的光学结
构、CCD成像过程、模拟观测数据的预处理)并构造
包含众多星系物理特性 (星系的形状、光度、颜色、
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图 1 最大模拟粒子数 –年代关系

最大模拟粒子数随年代的变化. N体数值模拟的发展大致分为三个阶段.早期的引力计算以直接求和为主,中期以 P3M为主,自

21世纪以来,分布式内存上并行化的 TreePM成为纯 N体模拟中引力算法的主流,而在混合型模拟中,大多将自适应网格技术应

用于 PM.图中的实线为修正的Moore定律,它给出了每隔 15.8个月,模拟粒子数增加一倍的趋势,略快于传统Moore定律的 18

个月

Figure 1 The size of N-body simulation as a function of running date. The development can be roughly divided into three phases. In the early phase,
the computation of gravity was mainly done using the direct summation, it was oriented to P3M in the middle phase. Since the 21th century, the para-

llelized TreePM on the distributed memory machines has become the mainstream of algorithms for the gravity solver in pure CDM simulations. The

solid line shows that the size of simulations doubles every 15.8 months, which grows faster than typical 18 months in the Moores empirical law.
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N evolves with time



Computational Cosmology 
Consortium of China (C4)

Members:
Purple Mountain Observatory 
National Astronomical Observatory
Shanghai Astronomical Observatory
Shanghai Jiaotong University 
Zhongshan University
Super-Computing Center of CAS

Facilities: ShenTeng 7000 (12,000 
cores)

Pangu simulation
N=30 billion, Box Size=1000 Mpc/h, 
WMAP5 cosmology
Using 2048 cores, 1 Million CPU hours, 
6TB memory, Data Volume:40 TB 

盘古模拟

Running cosmological simulation is very expensive



Figure 1: The dark matter density field on various scales. Each individual image shows the projected
dark matter density field in a slab of thickness 15h−1Mpc (sliced from the periodic simulation volume
at an angle chosen to avoid replicating structures in the lower two images), colour-coded by density
and local dark matter velocity dispersion. The zoom sequence displays consecutive enlargements by
factors of four, centred on one of the many galaxy cluster halos present in the simulation.

5

Hierarchic Structure of the universe

Image from Millennium Simulation



Using N-body simulation to study

• Halo mass function 
• Galaxy rotation curve 
• Subhalo mass function 
• Cosmic web properties: 
filament, voids, sheets 
• Dark matter power 
spectrum 

We can also: 
Investigate the effects of 
dark matter and dark 
energy on the structure 
formation 



Concordance ⋀-CDM Model 

+
𝝉,ns,σ8

Credit: Max Tegmark

Still not clear:

• Nature of DE
• WDM vs CDM

Goal of next generation 
sky survey: BAO, Weak-
lensing, redshift-distortion



Outline

• Structure formation 

• Models for galaxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local lab)

• Summary



利⽤用SDSS巡天，我们已经
直接观测到了100多万个星
系，精确地测量了其统计性
质：数⺫⽬目－光度，质量，颜
⾊色，形态，空间分布等

模拟宇宙学背景下星系的形
成（统计上）是当前星系宇
宙学的重要研究⽅方向
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adopt a spatial top-hat filter for which

ŴM (k; R) =
3

(k R)3
[sin(k R) − k R cos(k R)] (11)

where the mass M and filter radius R are related according to M =
4πρ̄R3/3.

3.2 The conditional luminosity function

In order to compute a LF from the halo mass function, we need

to specify the conditional luminosity function "(L | M) dL (see

equation 1), which gives the expected number of galaxies with lu-

minosities in the range L ± dL/2 (in some chosen photometric

band) in a halo of mass M. Note that "(L | M) is a statistical func-

tion, and should not be interpreted as the LF of galaxies residing in

any individual dark matter halo.

For massive haloes, such as clusters of galaxies, that contain many

galaxies the shape of "(L | M) should be the same as that of the

cluster LF, which can be well described by a Schechter function.

For all mass haloes, the average of "(L | M) over the halo mass

function should give the field galaxy LF. Therefore, we assume that

"(L | M) dL can be described by a Schechter function:

"(L|M)dL =
"̃∗

L̃∗

(

L

L̃∗

)α̃

exp(−L/L̃∗) dL . (12)

Here L̃∗ = L̃∗(M), α̃ = α̃(M) and "̃∗ = "̃∗(M); i.e. the three

parameters that describe the conditional LF depend on M. In what

follows we do not explicitly write this mass dependence, but con-

sider it understood that quantities with a tilde are functions of M.

With "(L | M) defined by equation (12), the total average lumi-

nosity in a halo of mass M is

⟨L⟩(M) =
∫ ∞

0

"(L | M)L dL = "̃∗ L̃∗$(α̃ + 2) (13)

with $(x) the Gamma function. The average number of galaxies

brighter than L̃∗ in a halo of mass M is

N ∗(M) ≡
∫ ∞

L̃∗
"(L | M) dL = "̃∗$(α̃ + 1, 1). (14)

with $(a, x) the incomplete Gamma function.

For each halo, we define a ‘central’ galaxy, the luminosity of

which we denote by Lc. We assume the central galaxy to be the

brightest one in a halo, consistent with the fact that in most (if not

all) haloes the brightest members reside near the centre. The mean

luminosity of this central galaxy is defined as

L̄c(M) =
∫ ∞

L1

"(L | M)L dL = "̃∗ L̃∗$
(

α̃ + 2, L1

/

L̃∗
)

, (15)

with L1 defined so that a halo of mass M has on average one galaxy

with L > L1, i.e.
∫ ∞

L1

"(L | M) dL = 1. (16)

In most of our discussion, the luminosity of the central galaxy of

a halo is assumed to be a random variable with distribution func-

tion "(L | M) at L > L1. Motivated by numerical simulations and

semi-analytical models of galaxy formation, which suggest that the

luminosities of central galaxies are tightly correlated with the masses

of their host haloes (e.g. Katz et al. 1996; Fardal et al. 2001; Pearce

et al. 2000; Kay et al. 2002; Kauffmann et al. 1993; Somerville &

Primack 1999; Cole et al. 2000), we also consider an alternative

sampling in which Lc follows a log-normal distribution with mean

Figure 2. A comparison of the galaxy LF with the halo mass function. Open

circles with error bars correspond to the 2dFGRS LF in the bj-band. Solid

(dashed) lines correspond to the LF that one would obtain from the Sheth

& Tormen (Press–Schechter) halo mass function under the assumption that

each halo yields exactly one galaxy with M/L = 100 h M/L⊙. Note that

under such naive assumptions one expects too many both faint and bright

galaxies, suggesting that in reality the M/L decreases (increases) with mass

at the low (high) mass end.

L̄c, and with some given width, i.e. we modify the form of "(L | M)

by replacing the part with L > L1 by a log-normal distribution. As

we will show, both these two samplings of Lc give similar results.

In order to specify the conditional LF fully, we need to spec-

ify the mass dependence of "̃∗, L̃∗ and α̃. We are guided by a

direct comparison of the halo mass function n(M) and the galaxy

LF, "(L). Under the assumption that each dark matter halo har-

bours exactly one galaxy, and that each system has exactly the same

mass-to-light ratio M/L , the galaxy LF follows directly from the

halo mass function. Fig. 2 compares the LF thus obtained assum-

ing M/L = 100 h M/L⊙ with that of the 2dFGRS. The actual LF

is steeper (shallower) than the one obtained directly from the halo

mass function at high (low) luminosities. This immediately sug-

gests that in reality, rather than being constant, ⟨M/L⟩ decreases

with increasing mass, reaches a minimum at around L∗, and then

increases again. Note that this is qualitatively consistent with simple

predictions from galaxy formation models; at low mass, feedback

effects cause M/L to increase, while inefficient cooling suppresses

the formation of galaxies in more massive haloes. The above com-

parison, however, is not to be taken too seriously, since in reality

not every halo harbours exactly one galaxy; some halos may be

empty while others contain thousands of galaxies. The comparison

in Fig. 2, and the particular value of M/L = 100 h M/L⊙, there-

fore only serves an illustrative purpose. Nevertheless, based on the

above comparison we adopt the following parametrization for the

average mass-to-light ratios:

〈

M

L

〉

(M) =
1

2

(

M

L

)

0

[

(

M

M1

)−β

+

(

M

M1

)γ1

]

, (17)

which has four free parameters: a characteristic mass M1, for which

the mass-to-light ratio is equal to (M/L)0, and two slopes, β and γ 1,

which specify the behaviour of ⟨M/L⟩ at the low- and high-mass

ends, respectively. For M ≪ M1 one has that ⟨M/L⟩ ∝ M−β , while

for M ≫ M1 the mass-to-light ratio increases with mass according

C⃝ 2003 RAS, MNRAS 339, 1057–1080

Yang et al. 2003

Line: theory
points: data

how to link them?
we need models for 
galaxy population 
formation

luminosity function:  theorists have been 
struggling with it for about 20 years



 interpreting galaxy distribution
• Abundance matching: using dark matter halo(subhalo) properties (often at 

accretion) with abundance match to galaxy population (no free parameters, 
still no physics)

• HOD/CLF: halo occupation distribution,conditional luminosity function: put 
galaxy(with given stellar mass/luminosity) in dark matter halo (local 
observations are inputs, no physics input)

• Hydra-simulation: with gas, star formation included,  advantage: model gas 
dynamics directly, but star formation, feedback still included by hand, problems: 
sub-grid physics, resolution effect, over-cooling, time consuming

• Semi-analytical model: combine dark matter halo merger trees with simple 
description of galaxy physics, advantages: computation easy to produce large 
sample of galaxy population, easy to change cosmology & model parameters 
(too many free parameters)

modeling  galaxy formation



Abundance matching (using stellar mass 
function only)

• n(>m_star)=n(>M_halo)

• current models have included subhalos and orphan 
galaxies, using halo mass at accretion(M_{acc})

The conditional luminosity function 1061

adopt a spatial top-hat filter for which
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LF, "(L). Under the assumption that each dark matter halo har-

bours exactly one galaxy, and that each system has exactly the same
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halo mass function. Fig. 2 compares the LF thus obtained assum-
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gests that in reality, rather than being constant, ⟨M/L⟩ decreases

with increasing mass, reaches a minimum at around L∗, and then

increases again. Note that this is qualitatively consistent with simple

predictions from galaxy formation models; at low mass, feedback

effects cause M/L to increase, while inefficient cooling suppresses

the formation of galaxies in more massive haloes. The above com-

parison, however, is not to be taken too seriously, since in reality

not every halo harbours exactly one galaxy; some halos may be

empty while others contain thousands of galaxies. The comparison

in Fig. 2, and the particular value of M/L = 100 h M/L⊙, there-

fore only serves an illustrative purpose. Nevertheless, based on the

above comparison we adopt the following parametrization for the
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which has four free parameters: a characteristic mass M1, for which

the mass-to-light ratio is equal to (M/L)0, and two slopes, β and γ 1,

which specify the behaviour of ⟨M/L⟩ at the low- and high-mass

ends, respectively. For M ≪ M1 one has that ⟨M/L⟩ ∝ M−β , while

for M ≫ M1 the mass-to-light ratio increases with mass according
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predictions from Abundance matching

  

Consistency of ΛCDM for galaxy halos

lensing

satellite motions

Guo et al 2010

halo abundance
matching

Relations between dark halo mass and galaxy stellar mass inferred
     (i)   from the motions of satellite galaxies
     (ii)  from gravitational lensing
     (iii) from matching predicted halo count to observed galaxy count
all agree! 8

  

Consistency of ΛCDM for galaxy clustering

Guo et al 2010

Populating halos/sub-   
halos by assigning 
galaxies as inferred by 
abundance matching 
to the stellar mass 
function gives an 
excellent fit to the 
observed clustering of 
stellar mass 

no free parameters!

9

stellar-halo mass 
relation galaxy clustering

Guo et al. 2010

star formation 
efficiency

1114 Q. Guo et al.

Figure 2. The stellar mass–dark matter halo mass relation. The solid curve
is obtained by matching galaxy abundances from the SDSS/DR7 to dark
matter halo abundances from the combination of the MS and the MS-II
(Fig. 1). The dashed curve shows an extrapolation of this relation to stellar
masses of 106 and 1012 M⊙ at the low- and high-mass ends, respectively.
The bottom panel shows the ratio of stellar mass to halo mass as a function
of halo mass.

of 10 per cent in stellar mass. Purely statistical errors are much
smaller than this. Since the abundances matched in equation (2)
range over almost six orders of magnitude, such uncertainties have
only a very small effect on the Mhalo–M∗ relation.

Our relation between galaxy stellar mass and the dark matter halo
mass is shown in the upper panel of Fig. 2. The solid curve uses
SDSS/DR7 data over the stellar mass range from 108.3 to 1011.8 M⊙,
which corresponds to dark matter halo masses between 1010.8 and
1014.9 M⊙. We extrapolate this relation to 106 M⊙ at the low-mass
end and to 1012 M⊙ at the high-mass end assuming constant slope,
as indicated by the dashed extensions. Galaxies with mass around
106 M⊙ are expected to reside in dark matter haloes with mass
∼1010 M⊙, where we expect errors in our abundance estimates still
to be below 10 per cent. At the high-mass end, the stellar mass
of the central galaxy becomes very insensitive to its dark matter
halo mass, indicating a suppression of star formation in the cores of
haloes more massive than ∼1013 M⊙.

If we adopt the functional form suggested by Yang et al. (2003)
and Moster et al. (2010), our derived relation can be approximated
to high accuracy by

M∗

Mhalo
= c ×

[(
Mhalo

M0

)−α

+
(

Mhalo

M0

)β
]−γ

, (3)

where c = 0.129, M0 = 1011.4 M⊙, α = 0.926, β = 0.261 and γ =
2.440. Note that this formula has been fitted to our results over
the halo mass range 1010.8 to 1014.9 M⊙, corresponding to the solid
curve in the upper panel of Fig. 2.

In the bottom panel of Fig. 2, we show the ratio of stellar mass to
dark halo mass as a function of halo mass. This reaches a max-

imum in haloes with Mhalo ∼ 1011.8 M⊙, slightly less massive
than the haloes which host L∗ galaxies. The peak value is around
3.5 per cent. The ratio drops very rapidly towards both lower and
higher halo masses: M∗/Mhalo < 0.27 per cent in dark matter haloes
with mass ∼1010.7 M⊙ and M∗/Mhalo ∼ 0.09 per cent in clusters
with ∼1014.8 M⊙. (Note that in the latter case the stellar mass refers
only to the central galaxy.)

Semi-analytic models like that of De Lucia & Blaizot (2007,
hereafter DLB07) produce curves very similar to those of Fig. 2 but
noticeably offset. This offset comes from several sources. As may
be seen in Fig. 1, the MS does not produce the correct (sub)halo
abundance below Mhalo = 1012 M⊙, so that a semi-analytic model
(SAM) based on the MS alone (like that of DLB07) is skewed as
a result. At the moment, there are no semi-analytic models tuned
to work simultaneously on the MS and MS-II simulations, though
we intend to produce such models in the future (Guo et al., in
preparation). In addition, the DLB07 models do not accurately fit
the Li & White (2009) mass function (see their fig. B1) so this
also introduces an appreciable offset in the M∗–Mhalo relation. The
scatter of this model around its own M∗–Mhalo relation is, however,
quite small and is comparable with the values we test below.

3.2 Comparison to observed Mhalo − M∗ relation

We now focus on galaxies with stellar mass between 1010 and
3 × 1011 M⊙ and show halo mass versus stellar mass in Fig. 3.
The solid curve is the prediction of our abundance matching as
shown already in Fig. 2. The circles with error bars show mean halo
mass as a function of central galaxy stellar mass as obtained from
gravitational lensing measurements (Mandelbaum et al. 2006). The

Figure 3. Dark matter halo mass as a function of stellar mass. The thick
black curve is the prediction from abundance matching assuming no dis-
persion in the relation between the two masses. Circles with error bars are
weak lensing estimates of the mean halo mass of central galaxies as a func-
tion of their stellar mass (Mandelbaum et al. 2006). The error bars show
the 95 per cent confidence ranges. Triangles with 1σ error bars show mean
halo masses as a function of central galaxy stellar mass derived from the
stacked kinematics of satellite galaxies (More et al. 2009). Red and green
dashed curves show abundance matching predictions for mean halo mass
as a function of galaxy stellar mass assuming dispersions of 0.1 and 0.2,
respectively, in log M∗ at given halo mass. The dashed black curve is the
satellite fraction as a function of stellar mass, as labelled on the axis at the
right-hand side of the plot.
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Figure 12. Comparison between the model and the observed stellar mass functions for different redshifts. The observed stellar mass functions are taken from Drory
et al. (2004; for z ! 0.9) and Fontana et al. (2006; for z " 1.1) and are represented by the symbols. The model stellar mass functions have been fitted to the
observations and are represented by the solid lines. The dashed lines are the theoretical mass function we obtain from the redshift-dependent parameterization. The
redshift is indicated at the top of each panel.

with the normalizations M0 and (m/M)z=0 and the slopes µ
and ν.

To parameterize γ over redshift, a linear dependence would
lead to a negative γ at a certain redshift. Though this is not
forbidden, it leads to a SHM ratio which would be increasing
monotonically with halo mass which is inconsistent with feed-
back processes at the massive end. Hence, we also choose a
power-law parameterization for γ :

γ (z) = γ0 · (z + 1)γ1 (25)

with the normalization γ0 and the slope γ1.
From Figure 13, we are not able to infer whether β converges

to a constant value. Thus, we adopt a simple linear parameteri-
zation:

β(z) = β1 · z + β0 . (26)

Note that we have also tried other parameterizations (constant
β, decreasing β) but could not reproduce the observed SMFs.
Using the linear parameterization for β and the power laws for

Table 7
Parameters for Redshift-dependent Stellar-to-halo Mass Relation

M1|z=0 µ (m/M)z=0 ν γ0 γ1 β0 β1

11.88 0.019 0.0282 −0.72 0.556 −0.26 1.06 0.17
±0.01 ±0.002 ±0.0003 ±0.06 ±0.001 ±0.05 ±0.06 ±0.12

Note. All quoted masses are in units of M⊙.

the other parameters, we were able to compute SMFs that are in
good agreement with the observed ones.

A fit to the derived values presented in Table 6 yields the
parameters given in Table 7. As we do not fully trust the derived
values of β for z ! 2, we neglect these two values and fit a line
to the remaining values of β.

7.3. The Stellar-to-halo Mass Relation for Different Redshifts

Having developed a redshift-dependent model of the SHM
relation, we now test this model by computing interpolated
SMFs for different redshifts. For this, we use the method
described in Section 3. However, now we do not use the
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Figure 13. Evolution of the stellar-to-halo mass relation parameters with redshift. The symbols correspond to the derived values while the solid line is a fit to the data.
For M1, (m/M)0, and γ this is a power law, while for β it is a straight line.

parameters that have been derived at each redshift by fitting
the model to the observations, but we use the eight parameters
of the redshift-dependent SHM relation that have been derived
in the previous section.

The resulting interpolated SMFs are compared to the observa-
tions (and the fitted mass functions) in Figure 12. For z ! 2, we
see excellent overall agreement, the interpolated mass functions
mostly overlap with the error bars of the observations.

The SMFs for the high-redshifts z " 2 are too low. The
deviations are largest at the low mass end. However, if we look
at Figure 12, we see that β is higher than the derived value for
the two highest redshifts which results in a low-mass slope that
is too shallow.

To compare the relation at different redshifts, we use the
redshift-dependent SHM relation with the eight parameters that
have been derived in the previous section. Figure 14 plots stellar
mass versus halo mass for different redshifts. The plot shows
that at a fixed low halo mass (e.g., M = 1011 M⊙), galaxies that
live in such halos are more massive at low redshift (m ∼ 109 M⊙
for z = 0) than galaxies that live in a halo of the same mass
at a higher redshift (m ∼ 108 M⊙ for z = 2). In contrast,
massive halos contain more massive galaxies at high redshift,
while at low redshifts the galaxies in massive halos have less
mass. However, as halos also become more massive over time,
one cannot identify a halo of a certain mass at high redshifts with
a halo of the same mass at low redshifts. Thus, the fact that at a
given (high) halo mass the mass of the central galaxy is lower at
present than at an earlier epoch does not imply that individual
galaxies lose mass during their evolution. This only means that
large halos accrete dark matter faster than large galaxies grow
in stellar mass, while the growth of low-mass halos is slower
than that of the central galaxies they harbor (see also Conroy &

Figure 14. Stellar mass as a function of halo mass for different redshifts. The
solid lines show different redshifts, which are indicated at the top of the panels.

Wechsler 2009). Because of its statistical nature, our model is
not suitable for following the evolution of an individual galaxy
through cosmic time. We also note that the SHM relation at the
massive end (M " 1013 M⊙) undergoes very little evolution,
which has also been found by Brown et al. (2008).

7.4. Clustering at Higher Redshift

Having determined the SHM relation as a function of redshift,
we are now able to populate halos with galaxies at any redshift.

920 MOSTER ET AL. Vol. 710

Figure 15. Correlation functions as a function of stellar mass at high redshift. The different panels correspond to different redshifts, which are given at the bottom of
each panel. The different lines are correlation functions for six stellar mass bins, which are given in the upper left panel. The error bars on the most massive sample
are from Poisson statistics. The correlation function of dark matter particles (thick solid line) at the respective redshifts is also shown for comparison. At high redshift,
the correlation function of the massive samples is only shown on large scales, since there is no relevant one-halo term.

We choose a set of redshifts and populate the halos with galaxies,
deriving the stellar masses from the redshift-dependent SHM
relation. We divide these galaxies into six samples of different
stellar mass between log m/M⊙ = 8.5 and 11.5. For each of
these samples, we compute the real space CF ξ (r) by counting
pairs in distance bins (Equation (3)). This leads to six CFs for
every selected redshift.

Figure 15 shows the CFs for six different redshifts as a
function of stellar mass. We also plot the correlation function
of dark matter at the respective redshifts for comparison. For
all redshifts, we see that massive galaxies are clustered more
strongly than low mass galaxies. The higher the redshift, the
more the CFs for different stellar masses differ. For high redshift,
there are very few massive galaxies in our limited volume
simulation box, and so the error bars become larger.

At low redshift (z ! 1), observational measurements of stellar
mass dependent galaxy clustering have recently been published
using the VIMOS-VLT Deep Survey (VVDS) and the zCOS-
MOS Survey (Meneux et al. 2008, 2009). In order to compare
our model predictions to these data, we compute correlation
functions for the same stellar mass bins and thresholds and
convert these to projected correlation functions as described in
Section 3.2. Figure 16 plots the observed projected correlation
functions (symbols) and the model predictions (lines) for differ-
ent stellar mass bins or thresholds in three redshift bins for the
zCOSMOS Survey and one redshift bin for the VVDS. There is
good general agreement between the model and observations.

Figure 16. Comparison between the model (lines) and observed (symbols)
projected correlation functions at 0.2 < z < 1.2. The upper and the left panels
show the zCOSMOS data in three redshift bins, while the lower right panel
shows the VVDS data. The different lines and symbols in each panel are for
different stellar mass bins and thresholds as indicated in the panels.
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Fig. 5.— The cosmic star formation rate history. The gray points
are taken from the compilation of observational data by Hopkins
& Beacom (2006), and the dashed line is the best fit to the data,
which are all corrected to the VD08 IMF. Our model prediction is
plotted as the solid line.

et al. 2006; Kitzbichler & White 2007), which have pro-
duced SFR-M∗ relations that are too low compared to
the observations at z = 2 and z = 1. Recently Fontanot
et al. (2009) have also examined the SFR-M∗ relation,
but their predictions are still lower than the observations.
In the following, we will investigate possible contribu-
tions to the boost of the SFR-M∗ relation in our model
vis-á-vis other models.
For the model with the traditional hot-mode cooling

and C03 IMF, the prediction is in agreement with the
data at z < 1, but is lower than the measurements at
z = 2. This is similar to the results of Kitzbichler &
White (2007) and Fontanot et al. (2009). In contrast,
when cold accretion is included, the model predicts more
galaxies with high star formation rates, so that the SFR-
M∗ relation is in better agreement for M∗ > 1010M⊙,
but it is still lower that the data at z > 2.
The normalization of the predicted SFR-M∗ relation

is also boosted in our fiducial model by the VD08 IMF.
This boost is larger at higher redshift, but is indepen-
dent of galaxy mass. In the model with the VD08 IMF,
at high redshift there are more massive stars that re-
turn more stellar winds to the interstellar medium and
thus decrease the stellar remnant mass. For example, at
z = 4, the stellar remnant at age of 0.5 Gyr is 28% of
the initial formed mass with the VD08 IMF, but it is
63% for the C03 IMF. Thus for a given star formation
rate history, the stellar mass is lower for the VD08 IMF,
which significantly boosts the normalization of SFR-M∗

relation. We find that the SFR-M∗ relation increases by
≈ 60% at z = 2.
Finally, we note that these results depend strongly on

the gas recycle fraction R. As noted previously, R is cal-
culated from stellar population synthesis, which involves
uncertainties from the modeling of stellar winds and stel-
lar evolution tracks. More strong constraints could be
put on the IMF with more precise modeling of stellar
winds and supernova feedback.

Fig. 6.— The space density of ULIRGs with LIR > 1012M⊙.
The implied star formation rate for these objects is SFR >
120M⊙/yr for the Chabrier 2003 IMF, but only 84M⊙/yr for the
VD08 IMF at z=2, which is bottom-light than the C03 IMF. The
data point at z=2 implies that both cold accretion and bottom-
light (or top-heavy) IMF are needed to produce enough ULIRGs.

5. COSMIC STAR FORMATION HISTORY

Many recent observations have been dedicated to mea-
suring the cosmic star formation history (e.g., Madau et
al. 1996; Giavalisco et al. 2004; Bouwens et al. 2006).
It has been found that the star formation rate density
(SFRD) at redshift 1− 2 is higher than that of the local
universe by an order of magnitude. The precise loca-
tion of the peak of the SFRD is not yet clear, but it
may be beyond z ∼ 2 (Steidel et al. 1999). With more
data from submm galaxies and Lyman break galaxies,
the SFRD can be measured out to the very early universe
(z ∼ 7). For galaxy formation models, it is important to
understand which mechanism drives the rapid increase
of SFRD at z > 2− 3, and the steep decrease at z < 1.
As our model parameters are normalized by the local

stellar mass function, we can make predictions for the
history of the SFRD. In Fig. 5, we compare the prediction
of our fiducial model to observations at 0 < z < 6. The
data are taken from the compilation of observational data
by Hopkins & Beacom (2006, and see references therein),
and we add the measurements of Reddy & Steidel (2008,
pentagon points) and Bouwens et al. (2007, circles). All
of the data and their best fit from Hopkins & Beacom
(dashed line) are converted to the VD08 IMF. We find
that our model reproduces the overall evolution of the
SFRD quite well, over a wide range of redshifts. At z > 3
the data are not yet well constrained, although we expect
that new data in the future will contribute additional
constraints on the models.
Although our model predicts the total SFRD approx-

imately, it is interesting to determine whether it also
predicts a sufficient number of galaxies with very high
star formation rates. The observations of ultra-luminous
infrared galaxies (ULIRGs) indicate that they are pos-
sibly galaxies experiencing strong starbursts with dust
obscuration (Rieke & Lebofsky 1979). Daddi et al.
(2007) found that the predicted number of intensely star-
forming galaxies in a SAM (Kitzbichler & White 2007)
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Fig. 1.—Distribution of model galaxies as function of color and0.1(g ! r)
the “observed” stellar mass, obtained from the relation between stellar mass-
to-light ratio and color of Bell et al. (2003). The dashed line corresponds to

and is used to split the0.1 !2(g ! r) p 0.81 " 0.15{log [M /(h M )] ! 10}∗ ,

model galaxies into red and blue populations (cf. Fig. 7 in vdB07).

Fig. 2.—Fraction of red centrals (left) and satellites (right) as function of
stellar mass. Open symbols correspond to the results of vdB07, obtained from
the SDSS group catalog of Yang et al. (2007), while different lines correspond
to the results obtained from our semianalytical model for different values of
the characteristic timescale for strangulation, as indicated. Error bars are ob-
tained using the jackknife technique and, for clarity, are only shown for the
fiducial model with instantaneous stripping (i.e., ).t p 0

galaxy even after its subhalo is dissolved in the N-body sim-
ulation (we discuss this in § 3). Finally, we ignore any potential
dependency of or t on the satellite mass, the host halo mass,fhot

the orbit of the subhalo, or the density distribution of the hot
gas associated with the host halo. These assumptions are cer-
tainly oversimplified. However, the main aim of this Letter is
not to give the most accurate description of the rate at which
the hot gas of satellite galaxies is stripped, but merely to in-
vestigate how changes in t and impact the colors of centralfhot

and satellite galaxies.

3. RESULTS

In a recent paper, van den Bosch et al. (2007, hereafter
vdB07) used the SDSS galaxy group catalog of Yang et al.
(2007) to determine the red fractions of central and satellite
galaxies as a function of their stellar masses. Here central gal-
axies have been defined as the most massive group members
(in terms of their stellar masses), while satellite galaxies are
all group members that are not centrals. Using the fact that the
color–stellar mass relation of SDSS galaxies is clearly bimodal,
vdB07 split the galaxies into blue and red populations using
the stellar-mass-dependent cut

0.1 !2(g ! r) p 0.76 " 0.15{log [M /(h M )] ! 10}. (2)∗ ,

Here is the color K-corrected to redshift0.1(g ! r) (g ! r)
, and is the stellar mass computed using the relationz p 0.1 M∗

between stellar mass-to-light ratio and color of Bell et al. (2003;
eq. [2] in Yang et al. 2007).

For our model galaxies, we compute the colors0.1(g ! r)
using the stellar population synthesis code of Bruzual & Charlot
(2003) for a Salpeter IMF.1 In order to model the photometric
errors in the SDSS, we add a random, Gaussian error of 0.05
mag to both the - and -band magnitudes of our model0.1 0.1g r
galaxies. Finally, for each model galaxy we compute the “ob-
served” stellar mass using the same relation between stellar
mass-to-light ratio and color as used for the data. The color–
stellar mass relation thus obtained for our fiducial model (with

, corresponding to instantaneous stripping of the hot gas)t p 0

1 We have verified that our results are not sensitive to the choice of the
IMF.

is shown in Figure 1. The figure clearly shows a bimodal color
distribution, with a red sequence that extends to more massive
galaxies than the blue sequence. This is mainly due to our
inclusion of AGN feedback (see also Croton et al. 2006; Bower
et al. 2006) and is in good, qualitative agreement with the data
(cf. Fig. 7 in vdB07). Upon closer inspection, however, we find
that the colors of the red sequence and the bimodality scale
are ∼0.05 mag redder than for the SDSS. It is unclear at present
what the origin of this color offset is. In order to limit its impact
on our analysis, we split our model galaxies into red and blue
populations using equation (2) but with a zero point that is
0.05 mag redder (indicated by the dashed line in Fig. 1).

Figure 2 compares the red fractions, , of centrals (left)fred

and satellites (right) as function of “observed” stellar mass
obtained from our fiducial, instantaneous stripping model (solid
line) with the results of vdB07 (open symbols). Note that this
model predicts a red satellite fraction that is ∼0.85, almost
independent of stellar mass, and in clear disagreement with the
data. As demonstrated in Weinmann et al. (2006) and Baldry
et al. (2006) the semianalytical models of Croton et al. (2006)
and Bower et al. (2006), which also assume instantaneous strip-
ping of the hot gas, suffer from exactly the same problem. As
for the centrals, the model roughly predicts the correct red
fraction at the massive end, which is mainly due to the inclusion
of radio-model AGN feedback. However, for centrals with

M,, the red fraction predicted by the model is a11M ! 10∗
poor match to the data. At the low-mass end ( M,),10M ! 10∗
it is upward from and inconsistent with the data. These low-
mass galaxies are too red because the cold gas is consumed
rapidly in their earlier, low-mass progenitors. Observational
work (Kennicutt 1998) shows that stars form efficiently only
in galaxies with surface density higher than a threshold, so star
formation should be more inefficient in low-mass progenitors,
but this process is ignored in our model. Another disagreement
is seen at M,, where model galaxies are too blue.10M ∼ 10∗
We will discuss this in § 4 and in this section we focus on the
model predictions at the massive end ( M,).11M ∼ 10∗

As discussed in § 1, the overprediction of red satellites could
be due to the inaccurate treatment of hot gas stripping from
satellite galaxies. To test this, we now consider models with
less efficient stripping. It is seen from equation (1) that this
can be obtained by increasing t or , and both are found tofhot

have similar trends on model predictions. Here we show only
results by changing t. The dotted and dashed lines in Figure 2
show the results obtained using equation (1) with f p 0.3hot

and and 10 Gyr, respectively. The effects of a prolongedt p 3
stripping are twofold. First of all, as expected, it reduces the

just used to refer to the methodology recently developed by

KCDW.

Our most important change concerns the definition of the galaxy

population at each output time. We define the largest subhalo in a

FOF group to host the central galaxy of the group, and this galaxy’s

position is given by the most-bound particle in that subhalo. All gas

that cools within a FOF group is funnelled exclusively to the central

galaxy. This definition of ‘central galaxy’ thus corresponds to the

one adopted in the standard analysis.

For the population of galaxies orbiting within a halo, however,

we distinguish between halo galaxies and satellite galaxies. Here

we have coined yet another term; ‘halo galaxies’ are attached to the

most bound particle of the remaining subhaloes in the FOF group.

These halo galaxies were proper central galaxies in the past, until

their halo fell into a larger structure. The core of this halo is,

however, still intact, and thus allows an accurate determination of

the position of the halo galaxy within the group. These halo

galaxies may still be viewed as ‘central galaxies’ of their respective

subhaloes, but they are no longer fed by a cooling flow since their

subhalo is not the largest within the FOF group.

Finally, when two (or more) subhaloes merge, the halo galaxy of

the smaller subhalo becomes a satellite of the remnant subhalo.

These satellites are treated as in the standard analysis. Their

position is tagged by the most-bound particle identified at the last

time they were still a halo galaxy, and they are assumed to merge

on a dynamical friction time-scale with the halo galaxy of the new

subhalo they now reside in. We need to introduce such satellites in

the subhalo scheme in order to account for actual mergers between

subhaloes, and also because of the finite numerical resolution of

our simulations, which limits our ability to track the orbits of

subhaloes once their mass has fallen below our resolution limit. It

also allows us to make direct contact with the standard scheme in

the limit of poor resolution. Note that the class of halo galaxies is

absent in the standard analysis, where all of these galaxies are

treated as satellites.

In the subhalo scheme, we define the virial mass Mvir of a

subhalo simply as the total mass of its particles. For the background

subhalo, we then define virial radius and virial velocity by

assuming that the halo has an overdensity 200 with respect to the

critical density. For other subhaloes we keep the virial velocity and

the halo’s dynamical time at the values they had just before infall.

5 RESULTS

5.1 Tully–Fisher relation

We use the velocity-based I-band Tully–Fisher relation

MI 2 5 log h ¼ 221:002 7:68ðlogW 2 2:5Þ ð14Þ

of Giovanelli et al. (1997), and the requirement of a gas mass

of , 8 $ 109h21 M( in ‘Milky Way’ haloes, to normalize our

models. We consider two variants for the implementation of

feedback, the ‘ejection’ model, where gas is blown out of small

haloes, and the ‘retention’ model, where reheated gas is always

kept within the halo.

In Fig. 6 we show the best-fitting Tully–Fisher relations

obtained for these two models, applied to the S2 cluster using the

‘subhalo’ and the ‘standard’ schemes. In the plots, we considered

only central galaxies of haloes that are peripheral to the cluster, but

that are not contaminated by heavier boundary particles. We also

applied a morphological cut, 1:2 # Mbulge 2Mtotal # 2:5, approxi-

mately selecting Sb/Sc galaxies. In Table 2 we list the model

parameters thus obtained. In the following, we will use the same set

Figure 6. The I-band Tully–Fisher relation for Sb/Sc galaxies in the S2 simulation. The two top panels have been obtained with the subhalo scheme using

ejection and retention feedback, respectively, while the two bottom panels show the equivalent plots using the standard scheme of KCDW. The galaxies have

been selected as central galaxies of uncontaminated haloes in the periphery of the cluster. The solid line represents the recent measurement by Giovanelli et al.

(1997).

Populating a cluster of galaxies – I. Results at z ¼ 0 739

q 2001 RAS, MNRAS 328, 726–750

and Sc galaxies from our SAM, we use the correlation be-
tween the B-band bulge-to-disk luminosity ratio and the Hubble
type given by Simien & de Vaucouleurs (1986). We select Sb
and Sc galaxies according to the criterion 1:2!Mbulge "Mtotal !
2:5. We consider only the central galaxies with such Hubble
types in the main halos. The velocity widthW is set to be 2 times
the maximum circular velocity of the disk, and we have assumed
that the disk maximum circular velocity is #25% larger than the
circular velocity of the halo at its virial radius. This boost of the
disk maximum circular velocity is expected in a galaxy halo
with typical concentration c #12, assuming that the disk mass
is negligible (e.g., Mo et al. 1998). The triangles in Figure 16
show the results for our model Sb and Sc galaxies defined in
this way. The figure shows that the scatter predicted by the
model is significantly smaller than that in the observational re-
sult. Note that in our modeling we have not taken into account
the scatter in the relation between the line width and the cir-
cular velocity, nor have we included the observational errors in
photometry and errors due to dust correction. Both can produce
scatter in the TF relation. Overall, the predicted TF slope agrees
quite well with the observed one, but the predicted luminosity
for a given disk maximum circular velocity is lower than that
observed. Note that if the dark halo responds to disk growth
adiabatically, then the boost in the disk maximum circular ve-
locity is expected to be larger than what is assumed above, mak-
ing the discrepancy between model predictions and observations
even larger. This problem with the TF relation in the current
!CDM model is known and is due to the fact that galaxy halos
predicted by this model are too concentrated (e.g., Mo & Mao
2000 and references therein). One possible solution to this prob-
lem is that some dynamical processes during the formation of
galaxies in dark halos can flatten dark matter halos (e.g., Mo &
Mao 2004), so that the boost in the disk maximum circular ve-
locity is reduced. Indeed, if the boost is about 10%, then the
predicted TF amplitude can match the observation.

4.4. Metallicity and Cold Gas Fraction in a Spiral Galaxy

Garnett (2002) studied the correlation between the metallicity
of the interstellar gas in a galaxy with its luminosity and rotation
velocity for a sample of spiral and irregular galaxies. In Figure 17,
we compare our model predictions with his results. We select
a sample of galaxies from our SAM with Mbulge "Mtotal > 1,
corresponding to spiral and irregular galaxies according to our
definition. The metallicity of the interstellar gas is obtained us-
ing the chemical evolution model described in x 3.2.4. The figure

Fig. 16.—The I-band Tully-Fisher relation for spiral galaxies in the L100
simulation.

Fig. 17.—Metallicity of the cold gas as a function of the luminosity in theB band
(top) or the rotation velocity (bottom). The small symbols are from our SAM, and
the squares are from the observations of Garnett (2002). The dashed line shows the
velocity at which the metallicity-vrot relation changes significantly (Garnett 2002).

Fig. 18.—Cold gas fraction as a function of the B-band luminosity. The
triangles are from our SAM, and the squares are from the observations of Garnett
(2002).
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Figure 4: Galaxy 2-point correlation function at the present epoch. Red symbols (with vanishingly
small Poisson error-bars) show measurements for model galaxies brighter than MK =−23. Data for the
large spectroscopic redshift survey 2dFGRS28 are shown as blue diamonds. The SDSS34 and APM31

surveys give similar results. Both, for the observational data and for the simulated galaxies, the corre-
lation function is very close to a power-law for r≤ 20h−1Mpc. By contrast the correlation function for
the dark matter (dashed line) deviates strongly from a power-law.
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What we have learned from SMF?

stars in the smallest halos. When both galaxy merging
(which was artificially switched off in models 1 and 2) and
photoionization are included, as in model 4 (solid line in
Fig. 1), the faint end remains too steep, and even more
bright galaxies are produced. In the models that follow, we
investigate the effects of including feedback processes in
addition to photoionization andmerging.

3.4. Model with Feedback—Disk Reheating

A solution to the faint-end problem is illustrated by
model 5.3 in Figure 2. Here feedback is included through
the reheating of disk gas in star-forming galaxies. We use
the standard prescription of Cole et al. (2000), but with
a larger value of !reheat ¼ 0:41 (equivalent to Vhot ¼
450 km s"1), which is required in order to obtain a faint-
end slope similar to that in Cole et al. for the larger value of
!b assumed in this work. This form of feedback flattens the
luminosity function considerably, resulting in reasonably
good agreement with the observed faint end. While the
slope is not as flat as that measured by Cole et al. (2001) or
Blanton et al. (2003), it is in good agreement with the steeper
slope reported by Huang et al. (2003). This achievement
carries a price, however—the overabundance of bright gal-
axies (formed through excessive cooling in massive halos) is
exacerbated, as there is now a much greater mass of diffuse
hot gas remaining in the larger halos. This gas is sufficiently
dense that the central regions are able to cool; consequently,
model 5.3 produces far too many bright galaxies. This result
depends little on the choice of "8. Adopting "8 ¼ 0:7 makes
the brightest galaxies only 0.5 mag fainter. This clearly
demonstrates a long-standing problem in semianalytic
models: previous calculations have either assumed low
values of !b or have invoked rather artificial ways to
prevent the cooling that forms these overluminous objects.

The energy requirements of model 5.3 are substantial but
not excessive. The reheating energy of 0:41# 1049 ergs M"1

$

should be compared to the total energy available from
supernova explosions, which is approximately 0:7# 1049

ergs M"1
$ for a Salpeter IMF or 0:9# 1049 ergs M"1

$ for the
Kennicutt IMF adopted in GALFORM. In a halo of circu-
lar velocity 250 km s"1, the mass of gas reheated is more
than 3 times the mass of gas formed into stars. If the level
of reheating is reduced, as illustrated by models 5.1
(!reheat ¼ 0:03) and 5.2 (!reheat ¼ 0:13), then the formation of
small galaxies is not suppressed sufficiently to match the
observed luminosity function.

3.5. Models with Energy Injection

In models 6.1–6.3 (Fig. 3), we investigate the effect of
assuming that a fraction of the supernova and stellar wind
energy heats the diffuse gas halo, causing it to expand. This
form of feedback suppresses the formation of both bright
and faint galaxies, but it does not produce a sharp break in
the luminosity function. Models 6.1 and 6.2 illustrate how
as the energy spent in heating the diffuse halo increases, the
break in the luminosity function becomes less pronounced.
If the heating is made even stronger, the resulting
luminosity function approaches a power law (model 6.3).
This form of feedback clearly cannot solve the problem of
overproduction of bright galaxies.

3.6. Model with Conduction

We now consider two possible schemes that are capable
of producing a good match to the observed luminosity func-
tion. The first involves balancing radiative cooling with
thermal conduction. The second involves expelling gas
from dark matter halos at such high energies that it is
subsequently unable to cool.

Thermal conduction is expected to imprint a special scale
on the galaxy population because of the strong temperature

Fig. 2.—Model 5. Starting frommodel 4, disk reheating is added in order
to suppress the formation of small galaxies. Results are shown for three
levels of energy input (!reheat ¼ 0:03, 0.13, and 0.41). The data points are the
same as in Fig. 1.

Fig. 3.—Model 6. These models illustrate the effect of energy injection.
Starting from model 5.3, the effect of heating the diffuse gas halo is
included. Models 6.1–6.3 have !halo ¼ 0:1, 0.2, and 1.0, respectively, in
addition to !reheat ¼ 0:41. Increasing the energy available for this form of
feedback suppresses the formation of both bright and faint galaxies but
does not produce a sharp break in the luminosity function.
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olution and 5 times better force resolution than the MS,
but follows evolution within a box of 5 times smaller side.
We update our earlier MS-based galaxy formation models
(Springel et al. 2005; Croton et al. 2006; De Lucia & Blaizot
2007, hereafter collectively referred to as DLB07) to include
a better treatment of a number of physical processes, and
we apply the improved model to both simulations simulta-
neously. This allows us to test explicitly how limited res-
olution affects our results. We demonstrate that together,
the two simulations enable study of the formation, evolu-
tion and clustering of galaxies ranging from the faint dwarf
satellites of the Milky Way to the most massive cD galaxies.
Uncertain astrophysical processes are strongly constrained
by the precise, low-redshift abundance and clustering data
provided by the SDSS. Models consistent with these data
can be tested against other observational data, notably the
satellite abundance around the Milky Way, but also, for ex-
ample, the Tully-Fisher relations of giant and dwarf galaxies
or the properties of high-redshift galaxy populations.

Previous generations of semi-analytic galaxy formation
models have been able to reproduce the properties of ob-
served galaxy populations in ever increasing detail (White &
Frenk 1991; Kauffmann et al. 1993; Cole et al. 1994; Kauff-
mann et al. 1999; Somerville & Primack 1999; Cole et al.
2000; Springel et al. 2001; Hatton et al. 2003; Kang et al.
2005; Baugh et al. 2005; Croton et al. 2006; Bower et al.
2006; De Lucia & Blaizot 2007; Somerville et al. 2008; Font
et al. 2008; Guo & White 2009; Weinmann et al. 2009). The
DLB07 model was built for the MS simulation and has been
extensively compared to the abundance, intrinsic properties
and clustering of galaxies, both in the local universe and at
high redshift. These comparisons have generally been lim-
ited to galaxies with stellar masses of at least 109M⊙, cor-
responding approximately to the resolution limit of the MS.
When the same model is applied to the MS-II, it signifi-
cantly overpredicts the observed abundance of galaxies near
this limit and it substantially overpredicts the abundance at
lower masses (see Fig. 1). The high-mass cut-off is also at
slightly larger mass than in the new SDSS data, although
it was consistent with earlier datasets (Croton et al. 2006).
Clearly, galaxy formation efficiencies are substantially too
high at low halo mass in the DLB07 model, and slightly too
high at high halo mass (see also, for example, Fontanot et al.
2009)

In the following section, we revisit the DLB07 model,
improving the treatment of a number of physical processes
and retuning the uncertain efficiency parameters to obtain
a better fit to the new SDSS data on abundance and clus-
tering. In particular, we change the treatments of supernova
feedback, of the reincorporation of ejected gas, of the sizes
of galaxies, of the distinction between satellite and central
galaxies, and of environmental effects on galaxies. Our pa-
per is organised as follows. In Sec. 2 we briefly describe the
two N-body simulations on which we implement our galaxy
formation model. A detailed description of the semi-analytic
model itself is presented in Sec. 3. In Sec. 4 we compare both
the abundance and the clustering of galaxies as a function
of stellar mass, luminosity and colour to low-redshift data
from the SDSS. We also compare model predictions to the
observed abundance of satellite galaxies around the Milky
Way, to the Tully-Fisher relation of isolated galaxies, and to
the galaxy number density profiles, stellar mass functions,

Figure 1. Stellar mass functions predicted by the galaxy for-
mation model of DLB07. The green curve is the prediction for
the MS-II and the red curve is that for the MS. Results for the
two simulations agree well above 109.5M⊙, but resolution effects
cause an underprediction at lower masses in the MS. Black stars
show the observed function for SDSS/DR7 with error bars in-
cluding both counting and cosmic variance uncertainties (Li &
White 2009; Guo et al. 2010). Blue triangles are results for a low-
redshift sample (0.0033< z <0.05) from SDSS/DR4 taken from
Baldry et al. (2008); these are corrected for surface-brightness
incompleteness, but the error bars do not include cosmic vari-
ance uncertainties. Clearly the model substantially overpredicts
the abundance of low-mass galaxies and slightly overpredicts the
masses of high-mass galaxies.

and intergalactic light fractions of clusters. A final subsec-
tion focusses on a few model predictions at high redshift.
Sec. 5 presents a concluding discussion of our results.

2 N-BODY SIMULATIONS

We build virtual catalogues of the galaxy population by
implementing galaxy formation models on the stored out-
put of two very large cosmological N-body simulations,
the Millennium Simulation (MS, Springel et al. 2005) and
the Millennium-II Simulation (MS-II Boylan-Kolchin et al.
2009). Both simulations assume a ΛCDM cosmology with
parameters based on a combined analysis of the 2dFGRS
(Colless & et al. 2001) and the first-year WMAP data
(Spergel et al. 2003). The parameters are Ωm = 0.25,
Ωb = 0.045, ΩΛ = 0.75, n = 1, σ8 = 0.9 and H0 =
73 km s−1Mpc−1. These cosmological parameters are not
consistent with more recent analyses of the CMB data (e.g.
Komatsu et al. 2010) but the relatively small off-sets are
not significant for most of the issues addressed in this pa-
per, with the important exception of the small-scale clus-
tering analysis of section 4.9.) The parameter which devi-
ates most from recent estimates is σ8 which is quoted as

c⃝ 2010 RAS, MNRAS 000, 1–35
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dependence of the Spitzer conductivity rate. Model 7.3
(solid line in Fig. 4) shows the result of including conduction
with !cond ¼ 25 in model 5.3 ("reheat ¼ 0:41, "halo ¼ 0). Such
a high value of the conductivity is indeed effective in sup-
pressing the formation of the most massive galaxies, since it
prevents efficient gas cooling in group and cluster-sized
halos. The brightest galaxies in the luminosity function are
instead built through mergers. The result is a rather good
match to the observed galaxy luminosity function. How-
ever, the conduction efficiency that we have assumed is
extremely high. For the model to operate at the required
level, we must assume both that the conductivity is not
suppressed below the Spitzer value and that the effective
temperature gradient is steeper than T / r2:5 in the region
of the cooling radius. Note that the Spitzer formula for ther-
mal conductivity in an ionized plasma breaks down if the
conductivity becomes too high, i.e., if the conduction ‘‘ satu-
rates,’’ as described by Cowie & McKee (1977). The models
shown in this paper do not take account of this saturation
limit. However, using the estimate of the saturated heat flux
from Cowie & McKee (1977), we have checked that our
results are not significantly affected by saturation (for model
7.3, which has the most extreme conduction of all our
models, there is only a small increase in the number of the
very brightest galaxies).

In models 7.1 and 7.2, we show the effect of assuming a
more modest conduction efficiency (!cond ¼ 1:0 and 0.1,
respectively). In these models, conduction is not sufficient to
suppress cooling in the larger halos adequately.

If we adopt a lower value for #8, however, a lower con-
duction efficiency gives a reasonable match to the observed
luminosity function. Model 7.4 shows the luminosity func-
tion for the case #8 ¼ 0:7 and !cond ¼ 7. This conduction

efficiency could be achieved if the temperature gradient was
T / r1:3 and the conduction was only slightly suppressed
below the Spitzer value. Although this is still a high rate of
conduction, it offers a promising route for explaining the
bright end of the galaxy luminosity function.

3.7. Model with Superwinds

The expulsion of gas from halos at high energy can, in
principle, strongly suppress the formation of later genera-
tions of galaxies, hence affecting the shape of the luminosity
function. Starting from model 5.2, we add further feedback
energy that expels cold gas completely, not only from the
disk but also from the halo. The superwind must have high
energy in order that the expelled material not be recaptured
by more massive halos. The effect of a low-power superwind
is illustrated by model 8.1 (dashed line in Fig. 5). This
model, with "sw ¼ 0:27 and $sw ¼ 3, has a relatively weak
superwind. This gas expulsion is in addition to the reheating
of cold disk gas ("reheat ¼ 0:13); we have assumed that there
is no heating of the diffuse halo ("halo ¼ 0:0). Although the
winds eject a large amount of gas, most of the material is
recaptured as larger halos collapse, and the luminosity
function differs little from that of model 5.2.

In model 8.2 (dotted line in Fig. 5), we have set "sw ¼ 5:0
and $sw ¼ 1, corresponding to a mean energy per superwind
particle of Eav ¼ 15 keV. Such an energetic wind is required
to ensure that very little material is recaptured by group
halos. In this model, the superwind dominates the feedback
energy budget; indeed, the total energy required
(5:13" 1049 ergs M#1

$ ) significantly exceeds that available
from supernovae alone. The model comes much closer to
matching the luminosity function but still overproduces

Fig. 4.—Model 7. These models illustrate the effect of thermal conduc-
tion. In model 7.3 (!cond ¼ 25), conduction is assumed to be highly efficient
(it is unlikely that such a high efficiency is physically plausible). More
realistic conduction efficiencies are illustrated in models 7.2 (!cond ¼ 1) and
7.1 (!cond ¼ 0:1). For model 7.4, we adopt a lower value for #8; a conduc-
tion efficiency of !cond ¼ 7 then gives a reasonable match to the observed
luminosity function. In all cases, the energy feedback parameters are set to
"halo ¼ 0:0 and "reheat ¼ 0:41.

Fig. 5.—Model 8. These models illustrate the effect of superwinds. In
model 8.1, an energy of "sw ¼ 0:27 drives a weak superwind (with $sw ¼ 3);
disk reheating has efficiency "reheat ¼ 0:13, and there is no heating of the
diffuse halo ("halo ¼ 0). A much more powerful wind is needed to create a
break in the luminosity function. Model 8.2 ("sw ¼ 5:0; $sw ¼ 1) illustrates
the effect of increasing the superwind power. An improved match to the
luminosity function can be achieved with the same power if #8 is lower.
Model 8.3 shows amodel with "sw ¼ 5:0, $sw ¼ 1, and #8 ¼ 0:7.
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Figure 8. Galaxy luminosity functions in the K (left) and bJ (right) photometric bands, plotted with and without ‘radio mode’ feedback
(solid and long dashed lines respectively – see Section 3.4). Symbols indicate observational results as listed in each panel. As can be seen,
the inclusion of AGN heating produces a good fit to the data in both colours. Without this heating source our model overpredicts the
luminosities of massive galaxies by about two magnitudes and fails to reproduce the sharp bright end cut-offs in the observed luminosity
functions.

stars formed. These metals are produced primarily in the su-
pernovae which terminate the evolution of short-lived, mas-
sive stars. In our model we deposit them directly into the
cold gas in the disk of the galaxy. (An alternative would
clearly be to add some fraction of the metals directly to
the hot halo. Limited experiments suggest that this makes
little difference to our main results.) We also assume that
a fraction R of the mass of newly formed stars is recycled
immediately into the cold gas in the disk, the so called ‘in-
stantaneous recycling approximation’ (see Cole et al. 2000).
For full details on metal enrichment and exchange processes
in our model see De Lucia et al. (2004). In the bottom panel
of Fig. 6 we show the metallicity of cold disk gas for model
Sb/c galaxies (selected, as before, by bulge-to-total luminos-
ity, as described in Section 3.5) as a function of total stellar
mass. For comparison, we show the result of Tremonti et al.
(2004) for mean HII region abundances in SDSS galaxies.

4 RESULTS

In this section we examine how the suppression of cooling
flows in massive systems affects galaxy properties. As we will
show, the effects are only important for high mass galaxies.
Throughout our analysis we use the galaxy formation model
outlined in the previous sections with the parameter choices
of Table 1 except where explicitly noted.

4.1 The suppression of cooling flows

We begin with Fig. 7, which shows how our ‘radio mode’
heating model modifies gas condensation. We compare mean
condensation rates with and without the central AGN heat-
ing source as a function of halo virial velocity (solid and
dashed lines respectively). Recall that virial velocity pro-
vides a measure of the equilibrium temperature of the sys-
tem through Tvir ∝ V 2

vir, as indicated by the scale on the top
axis. The four panels show the behaviour at four redshifts
between six and the present day. The vertical dotted line in
each panel marks haloes for which rcool = Rvir, the transi-
tion between systems that form static hot haloes and those
where infalling gas cools rapidly onto the central galaxy disk
(see section 3.2 and Fig. 2). This transition moves to haloes
of lower temperature with time, suggesting a ‘down-sizing’ of
the characteristic mass of actively star-forming galaxies. At
lower Vvir gas continues to cool rapidly, while at higher Vvir

new fuel for star formation must come from cooling flows
which are affected by ‘radio mode’ heating.

The effect of ‘radio mode’ feedback is clearly substan-
tial. Suppression of condensation becomes increasingly effec-
tive with increasing virial temperature and decreasing red-
shift. The effects are large for haloes with Vvir

>
∼ 150 kms−1

(Tvir
>
∼ 106K) at z <

∼ 3. Condensation stops almost com-
pletely between z = 1 and the present in haloes with
Vvir > 300 km s−1 (Tvir > 3 × 106K). Such systems corre-
spond to the haloes of groups and clusters which are typ-
ically observed to host massive elliptical or cD galaxies at
their centres. Our scheme thus produces results which are
qualitatively similar to the ad hoc suppression of cooling

A: thermal 
conduction

B: AGN feedback

A sharp decline at the bright end can be obtained if:
A: high thermal conduction in cluster
B: AGN feedback is incorporated

Benson et al. 2003 Croton et al. 2006



Problem 1: Stellar mass functions at z>0

•Model under-predict number of 
massive galaxies at z>2
•be aware of Cosmic variance and 
stellar mass estimation uncertainty 

•Too many galaxies at M_*=10^10 at 
z>0 (But Faint end is not well 
constrained, discrepancies among data  
and recent COSMOS results has 
more faint galaxies)

Large uncertainty on SMF at massive end (Bernardi+ 
2013,depending on how to fit light distribution) and 
faint end (survey magnitude limit etc) 

Kang et al. 2010, ApJ
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Figure 7. The bolometric LFs predicted by our light-curve models I (blue bands), II (red bands) and III (green bands), in the redshift range 0.1 ! z ! 5, are

here compared with the best fits to observational data obtained by Hopkins et al. (2007c) (yellow bands). The grey areas show the predictions obtained with

the parameterization given by the equations (21), as explained in Section 3.3. Uncertainties in the model LFs are computed by assuming Poisson statistics. The

dashed vertical green lines mark the range of the bolometric luminosities accessible to observations. The dotted red vertical lines show the luminosities beyond

which the LF of Hopkins et al. (2007c) predicts a number of AGN in the whole volume of our simulation smaller than 10. The vertical grey dotted lines around

the red ones have been calculated considering the error in the best fit of Hopkins et al. (2007c).

within our semi-analytic framework by modest changes of the BH

growth at high redshifts. The solution provided by equation (21)

is not unique either, since larger amounts of mass can be accreted

also by invoking alternative mechanisms that trigger gas accretion

episodes, for example by secular evolution through disc instabili-

ties, or by alluding to a higher gas cooling efficiency (see e.g. Viola

et al. 2007).

4 C O N C L U S I O N S

In this paper we have used and extended a semi-analytic model for

the co-evolution of galaxies and their central BHs, developed on

the outputs of the Millennium Simulation (Springel et al. 2005b),

and described in detail in Croton et al. (2006) and De Lucia &

Blaizot (2007). The aim of the model is to reproduce the observed

properties of BHs, AGN and their galaxy hosts. The physical as-

sumptions in the model with respect to BH growth can be divided

into two sets. The first one concerns the mass accretion history of

the central BHs in haloes, where we distinguish between radio mode

and quasar mode (Croton et al. 2006). This set makes predictions

for the relation between BH and galaxy host properties, which can

be compared to the observed scaling relations between BH mass

and different properties of their host galaxies. The second set of

prescriptions specifies the detailed AGN activity and light curve of

individual quasar episodes, and leads to predictions for the AGN LF

as a function of redshift. We considered three different models for

this detailed AGN activity, one of them motivated by the results of

recent hydrodynamical simulations of galaxy mergers that include

BH growth and feedback (Di Matteo et al. 2005; Hopkins et al.

2005; Springel et al. 2005a).

The main results of our analysis are as follows.

(i) The semi-analytic model is approximately able to reproduce

the observed BH scaling relations over the whole range of BH

masses and galaxy properties probed by observations. The intrin-

sic scatter in the model is significantly larger than in the data, a

mismatch that can in part be accounted for by adopting the observa-

tional selection criteria to obtain a mock BH catalogue with similar

characteristics as the observed one.

(ii) We find evidence that a quadratic relationship provides a sig-

nificantly better fit to some of the model scaling relationships than

a linear one, as already noted by Wyithe (2006).

(iii) Our model also matches the BH fundamental plane relation

derived by Hopkins et al. (2007a), and successfully predicts very

little evolution of this plane, at least out to z ∼ 3.

(iv) The model BH MF is in good agreement with the observed

one within the mass range accessible by observations, except on the

range ∼107– 109 M⊙, in which the number density predicted by the

model is smaller than the observed one.

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 385, 1846–1858

QSO Luminosity functions Most luminous QSO at z=6.3
（BH: 10^10 solar mass)

Marulli et al. 2008
How to relate the growth of BH with galaxy formation?

In SAM, QSO growth occur with major mergers

BH accretion more efficient at high-z?
Any other source of rapid BH accretion?

Predictions on QSOs

吴学兵 et al. 2015 Nature



Even the gas cooling at high-z is quite different
Cold flow at high-z, massive haloes: 
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Figure 1. Entropy, velocity and inward flux of cold streams pouring through hot haloes. The

maps refer to a thin slice through one of our fiducial galaxies of Mv = 1012M⊙ at z = 2.5. The

arrows describe the velocity field, scaled such that the distance between the tails is 260 km s−1.

The circle marks the halo virial radius Rv. The entropy, log K = log(T/ρ2/3), in units of the

virial quantities, highlights (in red) the high-entropy medium filling the halo out to the virial

shock outside Rv. It exhibits (in blue) three, radial, low-entropy streams that penetrate into the

inner disk, seen edge-on. The radial flux per solid angle is ṁ=r2ρ vr, in M⊙ yr−1rad−2, where ρ

is the gas density and vr the radial velocity.

Galaxy formation by cold streams 13

Figure 5. Analytic prediction for the regimes dominated by cold flows and shock-heated
medium in the plane of halo mass and redshift, based on Fig. 7 of DB06. The nearly
horizontal curve marks the robust threshold mass for a stable shock based on spherical
infall analysis, Mshock(z). Below this curve the flows are predicted to be predominantly
cold and above it a shock-heated medium is expected to extend out to the halo virial
radius. The inclined solid curve is the conjectured upper limit for cold streams, valid at
redshifts higher than zcrit ∼ 2. The hot medium in haloes of Mv > Mshock at z > zcrit is
predicted to host penetrating cold streams, while haloes of a similar mass at z < zcrit are
expected to be all hot, shutting off most of the gas supply to the inner galaxy. Also shown
is the characteristic Press-Schechter halo mass M∗(z); it is much smaller than Mshock at
z>2.

expected to develop along narrow, cold, radial streams that penetrate through the halo,
because the cooling there is more efficient than in the surrounding halo.

The appearance of intense streams at high z, as opposed to their absence at low z, is
likely to reflect the interplay between the shock-heating scale and the independent charac-
teristic scale of nonlinear clustering, i.e., the Press-Schechter36 mass M∗ that corresponds
to the typical dark-matter haloes forming at a given epoch. The key difference between the
two epochs is that the rapid growth of M∗ with time, as seen in Fig. 5, makes Mshock≫M∗

at z>2 while Mshock∼M∗ at lower redshifts.

Cosmological N -body simulations9,37 reveal that while the rare dark-matter haloes of
Mv ≫M∗ tend to form at the nodes of intersection of a few filaments of the cosmic web,
the typical haloes of Mv∼M∗ tend to reside inside such filaments. Since the filament width
is comparable to the typical halo size R∗∝M1/3

∗ and seems not to vary much with position
along the filament, one expects the rare haloes to be fed by a few streams that are narrow

Dekel etal. 2009

Gas goes to halo center in form of cold flow, faster 
than conventional cooling formula:  Mhot(rcool)/tcool



High-z galaxy suffers many mergers, and difficult to observed)
Is cold flow stable?

4 L. Wang et al.

Figure 2. The top two rows are density slices of the col-ref-512 and col-mer-512 simulations, (1st and 2nd row respectively). Each
column represents 1.5, 2.5, 3.0 and 4.0 Gyrs. The bottom two rows are temperature slices. The solid/dashed line indicates the virial
radius Rh/0.5Rh. At t = 1.5 Gyr the radius of the stream at Rh and 0.5Rh is around 7.5 and 5 kpc respectively.

passage of the satellite at t = 2.5 Gyrs, marked by the red
line in the figure.

Despite the very destructive effect of the satellite on the
stream, the cold flow is able to re-build itself quite rapidly
in less than 0.3 Gyrs. This shows that in the presence of a
continuous accretion of cold gas from cosmological filaments,
even if disturbed by orbiting satellites, cold flows are able
to regenerate themselves quite rapidly.

4 DISCUSSION AND CONCLUSION

In this letter, inspired by recent simulation works and obser-
vations, we have studied the stability of cold streams pene-
trating through hot gaseous halos in dark matter halos with
mass M = 1012M⊙ at z = 2 by hydrodynamic simulations
in a simplified scenario.

Without external perturbations (e.g. satellites), the cold
gas is able to flow into the inner region of the central galaxy.
The K-H instability and thermal conduction are not able to
inhibit the cold gas accretion. K-H instability might have
been damped by the supersonic motion of the gas due to
the low cooling rate (Vietri et al. 1997).

When we consider the disturbing action of a satellite

(with a mass ratio of 1:33) merging with the central halo,
the accretion rate of cold gas at half of the virial radius
experiences a dramatic drop for ∼ 0.5 Gyrs. In this period
the supply of cold gas into the central region decreases by
more than ∼ 70%.

Cosmological simulations have shown that the merger
rate at z = 2 for our satellite/host mass combination is
about two mergers per Gyr(Fakhouri et al. 2010). However,
the cross section between isotropically distributed stream
and satellites can be crudely estimated by

Vcs

Vhalo
= (Rcold)

2 2π
Rh

3
/
4π
3
R3

h ∼ 1% (4)

where Vcs and Vhalo are the volume of cold stream and
halo respectively. Therefore, the realistic distribution of cold
stream and satellite would play an important role.

Even in the case of a direct interaction between the
satellite and the stream, the flow of cold gas towards the
halo center is able to re-establish itself in less than 0.3 Gyrs,
under the assumption of a continuous flow of cold gas from
cosmic filaments.

What we present in this Letter is a pilot study for the
stability of Cold Flows. We plan to improve and extend it in
forthcoming works by increasing the resolution of the sim-

c⃝ 0000 RAS, MNRAS 000, 000–000

Wang, Kang+ 2014, MNRAS

Our toy model shows: 
cold flow can maintain 
its stability if continuous  
cold flow is sustained
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Figure 1. Evolution of galaxy SMFs. The data points at z = 0 are taken from Cole et al. (2001; squares) and Bell et al. (2003; triangles). The high-z data are taken
from Drory et al. (2005; triangles), Fontana et al. (2006; circles), and Marchesini et al. (2009; squares). The best fit to the local SMF by Cole et al. is duplicated as
gray line in each panel. The red dashed, green dotted, and black solid lines are our model predictions under different assumptions; see the main text. Note that here all
data are transferred into the C03 IMF.
(A color version of this figure is available in the online journal.)

The B-band data are taken from Norberg et al. (2002), Wolf
et al. (2003), and Gabasch et al. (2004). The K-band data are
taken from Cole et al. (2001), Huang et al. (2003), and Cirasuolo
et al. (2007). Our model predictions are shown as the solid and
dashed lines for the VD08 and C03 IMFs, respectively. Overall
we find good agreement between the model predictions and the
data in both B and K bands. The agreement at high redshifts
is encouraging as previous models (e.g., Kitzbichler & White
2007; Bower et al. 2006) have underpredicted the abundance of
bright galaxies in K-band at high redshifts. As stated previously,
this is mainly due to the implementation of cold accretion in the
model. Note that the B-band LFs drop off at the faint end at
high redshift, and this is due to the resolution of our simulation,
in which only halos with mass larger than 5 × 109 M⊙ h−1 are
included.

We also find that the model predictions only slightly depend
on the choice of IMF. This is unexpected, because the VD08
IMF contains more high-mass stars. However, as shown by
van Dokkum (2008) and Marchesini et al. (2009), although
there are more massive stars in the VD08 IMF, the number of
characteristic stars that dominate the optical light also decreases
with increasing redshift. As a result, the net effects on the
luminosity are modest.

4. THE STAR FORMATION RATE–STELLAR MASS
RELATION

We investigate the SFR–M∗ relation in this section. A direct
comparison between the model and the observational data is
difficult because of the various selection effects in the data. First,
the tight correlation between SFR and M∗ is observed only for
star-forming galaxies, and a simple and robust way to select star-
forming galaxies in the model to match the various observational
samples is lacking. Second, due to survey limits, many low-SFR
(or passive) galaxies are not included in observational samples,
which may give rise to a biased SFR–M∗ relation. However,
given the tightness of the SFR–M∗ relation and its small scatter,
the missing galaxies cannot contribute significantly above the
SFR detection limit (Davé 2008).

We select all the model galaxies and plot their average SFR in
Figure 4. The data plotted are Drory & Alvarez (2008; triangles),
Dunne et al. (2009; open squares), and Chen et al. (2009; filled
squares). The shaded area shows the best fits (with 1σ variance)
to the data at z = 2, 1, 0 quoted by Daddi et al. (2007) and
Elbaz et al. (2007). It is important to note that the Chen et al.
(2009) and Drory & Alvarez (2008) data are the average SFR
of all galaxies in their samples, while the other data are only

Kang et al. 2010 ApJ: rapid cold accretion 
produce more massive galaxies

Could deep survey around luminous QSO identify the nearby 
filamentary structure around? 
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Figure 2. Evolution of the stellar mass function from z = 3 to z = 0. Lines show predictions from our new model (solid red), from
Henriques et al. (2013) (dashed red) and from Guo et al. (2013) (dotted red). These should be compared with the blue symbols with
error bars which represent the combined observational data which we use to constrain the MCMC. As described in Appendix A, the
datasets we combine include SDSS (Baldry et al. 2008 , Li & White 2009) and GAMA (Baldry et al. 2012) at z ⇠ 0, and Marchesini
et al. (2009), Spitzer-COSMOS (Ilbert et al. 2010), NEWFIRM (Marchesini et al. 2010), COSMOS (Domı́nguez Sánchez et al. 2011),
ULTRAVISTA (Muzzin et al. 2013, Ilbert et al. 2013) and ZFOURGE (Tomczak et al. 2014) at higher redshift. The z = 0 combined
stellar mass function is repeated at higher redshift as a dotted black line. Here and in all subsequent plots, predicted stellar masses have
been convolved with a gaussian in logM?, with width 0.08⇥ (1 + z), in order to account the uncertainties in observational stellar mass
determinations.

riques et al. (2013). As noted by Wang et al. (2008) and Guo
et al. (2013), the uncertainties in galaxy formation physics
produce much larger di↵erences in galaxy masses than any
change of cosmology within the currently allowed range. As
already shown in Henriques et al. (2013), the longer time-
scales for gas reincorporation in low-mass haloes combine
with stronger SN feedback to reduce the abundance of dwarf
galaxies at high redshift. The return of ejected gas at later
times results in a significant build-up at z 6 1, as required
by the observational data. This late return does not drive
similar low-redshift growth in massive galaxies because AGN
feedback and less e�cient cooling result in the production
of hot gas atmospheres rather than further star formation
in these systems. Overall, our new galaxy formation model
(like the model of Henriques et al. (2013) before it) is able to
explain the observed evolution in the stellar mass function
over the last 80% of cosmic history and over the full mass
range constrained by observations.

The trend for lower mass galaxies to form their stars
at later times than high-mass ones (i.e. “down-sizing”) can
be seen more directly in Fig. 3. Here model results for the
growth in mass of individual galaxies are shown for systems
that have log10(M?[h

�2 M�]) 9.75, 10.25, 10.75 and 11.25
at z = 0. Dashed curves give the mean stellar mass of the
most massive progenitor as a function of redshift. From least

massive to most massive final galaxy, the growth factors
since z = 2.5 are 28, 18, 9 and 7, respectively, showing that
giant galaxies indeed have a larger fraction of their mass in
place at high redshift than dwarfs.

It is not, of course, possible to observe directly the
growth histories of individual galaxies, but a number of re-
cent papers suggest that these can be inferred by assum-
ing that the typical progenitor mass of galaxies that have
stellar mass M⇤,0 today, M⇤(z,M⇤,0), can be inferred from
the “abundance-matching” equation n(M⇤, z) = n(M⇤,0, 0),
where n(M⇤, z) is the comoving abundance at z of galaxies
with stellar mass exceedingM⇤ (e.g. van Dokkum et al. 2010;
Brammer et al. 2011; Papovich et al. 2011). This argument
neglects the scatter in assembly history among galaxies of
given M⇤,0 as well as the non-conservation of galaxies due to
mergers. The solid curves in Fig. 3 show the result of deriv-
ing growth histories in this way in our model. It is clear that
abundance matching leads to significant underestimation of
the true amount of growth, giving factors of 9, 6, 4 and 3
since z = 2.5, two to three times smaller than the correct val-
ues. These results, for the mass growth of progenitors, are
consistent with the findings of Behroozi et al. (2013) and
represent a larger di↵erence between the true mass growth
and the cumulative number densities method than found
for the evolution of descendants (Leja et al. 2013). Points
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Problem 3: Cosmic Star Formation History
(not a problem of SAM, but data itself)14 Henriques et al.

Figure 11. The evolution with redshift of the comoving density
of cosmic star formation. The new model (solid red line), that of
Henriques et al. (2013) (dashed red line) and that of Guo et al.
(2013) (dotted red line) are compared with observational data
from Karim et al. (2011), Bouwens et al. (2012), Schreiber et al.
(2014) and Behroozi et al. (2013).

As a result, a model that correctly predicts the observed
evolution of the stellar mass function may not match the
observed evolution of the star formation rate density.

In Fig. 11 we compare model predictions to observa-
tional estimates of the star formation rate density from z = 9
to z = 0. As in previous figures we show results for the new
model of this paper as a solid red line, results for the model
of Henriques et al. (2013) as a dashed red line, and results
for the Guo et al. (2013) model as a dotted red line. The
observations are taken from COSMOS (Karim et al. 2011),
the Bouwens et al. (2012) sample of Lyman-break galax-
ies, combined Herschel and HST H band-selected catalogs
(Schreiber et al. 2014) and the Behroozi et al. (2013) com-
pilation. The observed rate has a broad peak at relatively
low redshift (z ⇠ 2 to 3) and declines significantly by z = 0
but also to higher redshift. The prediction of these general
features can be considered as one of the first significant suc-
cesses of semi-analytic modelling of galaxy formation in a
CDM universe (White 1989). Our new model matches the
overall shape of the observed relation reasonably well al-
though appearing not peaked enough at z = 2. It seems
that, despite fully matching the most recent observations of
the stellar mass function from z = 3 to z = 0, we predict
a milder decrease in the integrated star formation rate den-
sity than observed. There is thus some tension between the
observational determination of these two quantities (Leja
et al. 2014; Whitaker et al. 2014). We note that our modified
treatment of radio mode feedback is responsible for the sub-
stantially larger drop in the star formation rate density at
z < 2 than in the Henriques et al. (2013) model. The change
from WMAP7 to Planck cosmology results in higher halo
accretion rates at early times and higher star formation rate
densities at z > 2.

As pointed out by Schaye et al. (2010) and also seen
in the MCMC analysis of Henriques et al. (2013), the high-
redshift star-formation rate density is mostly determined by

the accretion of primordial material onto halos with virial
temperatures for which cooling is e�cient. Below z = 2, the
slowing of the cosmological accretion rate combines with
a lengthening of characteristic cooling times to produce a
global decrease in star formation rates. In addition, at later
times AGN feedback and environmental quenching mech-
anisms also contribute to the decrease in the integrated
star formation density, moving galaxies from the main star-
forming sequence into the passive population.

6 SUMMARY AND CONCLUSIONS

We have updated the cosmological parameters underlying
our galaxy formation model to the values preferred by
the first analysis of Planck CMB data, while modifying
our treatment of baryonic processes to address two major
problems identified in earlier modelling, namely the over-
prediction of the abundance of low-mass galaxies at redshifts
z > 1 and the overly large passive fraction predicted among
low-redshift dwarfs. We use recent observational estimates
of the abundances and passive fractions of galaxies over the
stellar mass range 8.0 6 logM⇤/M� 6 12.0 and the red-
shift range 0 6 z 6 3 as constraints on our modelling, using
MCMC procedures to identify the thresholds, scaling expo-
nents and e�ciencies needed for our treatment of baryonic
processes to match the observations.

Relative to the most recent of our previous publicly-
released models (Guo et al. 2011, 2013) matching these ob-
servations required us to delay the return of material ejected
in galactic winds (as in Henriques et al. 2013), to weaken
ram-pressure stripping in low-mass halos (as advocated by
Font et al. 2008, for their own galaxy formation models), to
lower the gas surface density threshold for star formation,
and to make radio mode feedback from AGN more e�cient
at late times. With these changes, our new model reproduces
our fiducial observations well over their full stellar mass and
redshift ranges. In particular, it matches both the observed
abundance of low-mass galaxies at z > 1 and the observed
sharp, low-redshift transition between predominantly star-
forming systems at low mass, logM⇤/M� < 10.0, and pre-
dominantly passive galaxies at high mass, logM⇤/M� >
10.5. For low-redshift galaxies, the detailed distributions of
colour, specific star formation rate, and luminosity-weighted
stellar age are matched reasonably well across the entire stel-
lar mass range, 8.0 6 logM⇤/M� 6 12.0. In addition, the
evolution of the mean cosmic star formation rate density
over the range 0 < z < 9 is reasonably well reproduced,
once possible calibration uncertainties are allowed for.

Our new model embeds simple but plausible represen-
tations of the physical processes known to influence galaxy
formation and evolution in the structure formation frame-
work of the concordance ⇤CDM model, yet it behaves in a
very similar way to the simple toy model which Peng et al.
(2010) introduced to interpret the observed evolution of stel-
lar mass functions split into star-forming and passive sys-
tems. At each redshift, there is a well-defined star-forming
main sequence along which specific star formation rate varies
only weakly. The stellar mass function of star-forming galax-
ies has a steep low-mass slope and evolves very little with
redshift, whereas that of passive galaxies has a much flat-
ter low-mass slope and grows strongly in amplitude, but
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Fig. 7.— The evolution of stellar mass density. Data points are
taken from the compilation by W ilkins et al. (2008). The lines are
integrated stellar mass density from the cosmic star formation rate
history (dashed line in Fig.5). Di � erent gas recycle fraction,R, are
used for the two lines. For the dashed line, R is taken from the
C03 IM F, while the solid line uses R from the V D08 IM F. We can
find that better agreement is obtained if the stellar remnant mass
is lower, which is the case with a bottom-light (or top-heavy) IM F.

is lower than the data at z=1 and 2 by an order of mag-
nitude. Recently Khochfar & Silk (2009) showed that
the inclusion of cold accretion in their model produces
enough ULIRGs.
In Fig. 6, we show our model predictions, and we com-

pare them to the data from Sander et al. (2003, z=0)
and Daddi et al. (2007, z > 0). The blue and black
lines show the model predictions with cold-mode and
hot-mode accretion, respectively. We again consider two
possible IMFs (C03 IMF: solid lines; VD08 IMF: dashed
lines). The ULIRGs with L > 1012L⊙ have star forma-
tion rates larger than 120M⊙/yr for the C03 IMF (for
the VD08 IMF, the implied SFR at z = 2 is 84M⊙/yr).
As can be seen from the figure, both cold accretion

and an evolving IMF are required for the model to be
reconciled with the data. At z=1, the model cannot be
constrained well as cold accretion is no longer very im-
portant and the VD08 IMF is similar to the C03 IMF.
We note that data at z > 3 contribute strong constraints
on the model, and additional constraints will be obtained
from observations from future high-z submm galaxy sur-
veys.
Finally, we compare the observed stellar mass density

history with that expected from the integral of cosmic
star formation history in Fig. 7. The integrated stellar
mass is simply calculated as

∫
SFR(t)(1−R)dt, where R

is the fraction of gas returned to the inter-stellar medium
by stellar winds and supernovae, which is dependent on
the IMF and stellar ages. The data points in the fig-
ure show the measured stellar mass density compiled by
Wilkins et al. (2008), and the lines are inferred from the
cosmic star formation history (the same as the dashed
line in Fig. 5), but with different parameter R.
Some have found that the inferred stellar mass density

from the cosmic star formation history is higher than the

measured one at 1 < z < 3 with either a Salpeter IMF
or Kroupa (2001) IMF (e.g., Wilkins et al. 2008). Our
fiducial model’s result (solid line) uses the VD08 IMF,
and we also show the results with R taken from the C03
IMF.We find that the VD08 IMF yields better agreement
with the data, and this is partly due to the fact that the
stellar remnant mass is lower with this IMF (i.e., higher
R).

6. C O NC LUSIO NS

In this paper, we use a semi-analytical model of galaxy
formation to study the evolution of the galaxy stellar
mass function, B- and K-band luminosity functions, the
star formation rate-stellar mass relation, and the cos-
mic star formation rate history. We modify our previous
model to include cold gas accretion, an evolving stellar
IMF, and stellar stripping from satellites. We focus on
the impacts of these effects and assumptions on the pre-
dictions of the model, and we obtain the following results:

• Cold accretion in massive halos at high redshifts is
crucial to produce a sufficient number of massive
galaxies at z > 2, in order to reconcile the model
with the data. By accounting for cold accretion, as
well as stellar stripping from satellite galaxies, our
model can reproduce the mild evolution of the stel-
lar mass function from z = 1 to z = 0. This resolves
the problems of previous semi-analytical models,
which have predicted too few massive galaxies at
high redshift and too strong evolution at low red-
shift.

• The predicted star formation rate - stellar mass re-
lation in previous semi-analytical models is too low
at z > 1. We show that such a correlation can be
predicted from a SAM, and the normalization can
be boosted to match the data if an evolving IMF is
adopted. The main cause of the higher normaliza-
tion is the larger number of high-mass stars in our
adopted IMF (van Dokkum 2008), which produces
a lower stellar remnant mass, due to stronger stellar
winds and supernovae ejecta. We find that at z = 2
the specific star formation rate is increased by 60%
compared to a model with a Chabrier (2003) IMF.

• Our model is capable of reproducing the evolution
of the cosmic star formation rate. An additional
constraint can be placed on the model by using the
number density of ULIRGs, which have relatively
high star formation rates. We find that the com-
bined effect from cold accretion and a bottom-light
(or top-heavy) IMF can reproduce the number den-
sity of ULIRGs. The contradiction between the
measured stellar mass density and the integrated
one from the cosmic star formation rate can be re-
solved by using an IMF containing more high-mass
stars.

In summary, we argue that there are currently no se-
vere conflicts between the CDM model and galaxy obser-
vations. We can now explain issues that were previously
considered to be major problems: the rapid formation of
massive galaxies at high redshift and their mild evolu-
tion at low redshift; the high amplitude of the observed
SFR-M∗ relation; and the apparent discrepancy between
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from the ratio of FIR to observed (uncorrected) FUV luminosity densities (Figure 8) as a

function of redshift, using FUVLFs from Cucciati et al. (2012) and Herschel FIRLFs from
Gruppioni et al. (2013). At z < 2, these estimates agree reasonably well with the measure-

ments inferred from the UV slope or from SED fitting. At z > 2, the FIR/FUV estimates

have large uncertainties owing to the similarly large uncertainties required to extrapolate
the observed FIRLF to a total luminosity density. The values are larger than those for

the UV-selected surveys, particularly when compared with the UV values extrapolated to

very faint luminosities. Although galaxies with lower SFRs may have reduced extinction,
purely UV-selected samples at high redshift may also be biased against dusty star-forming

galaxies. As we noted above, a robust census for star-forming galaxies at z ≫ 2 selected
on the basis of dust emission alone does not exist, owing to the sensitivity limits of past

and present FIR and submillimeter observatories. Accordingly, the total amount of star

formation that is missed from UV surveys at such high redshifts remains uncertain.

Figure 9: The history of cosmic star formation from (top right panel) FUV, (bottom right panel) IR,
and (left panel) FUV+IR rest-frame measurements. The data points with symbols are given in Table
1. All UV luminosities have been converted to instantaneous SFR densities using the factor KFUV =
1.15 × 10−28 (see Equation 10), valid for a Salpeter IMF. FIR luminosities (8–1,000µm) have been
converted to instantaneous SFRs using the factor KIR = 4.5 × 10−44 (see Equation 11), also valid for a
Salpeter IMF. The solid curve in the three panels plots the best-fit SFRD in Equation 15.

Figure 9 shows the cosmic SFH from UV and IR data following the above prescriptions,

as well as the best-fitting function

ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙ year−1 Mpc−3. (15)

These state-of-the-art surveys provide a remarkably consistent picture of the cosmic SFH:

a rising phase, scaling as ψ(z) ∝ (1 + z)−2.9 at 3 ∼
< z ∼

< 8, slowing and peaking at some
point probably between z = 2 and 1.5, when the Universe was ∼ 3.5 Gyr old, followed by
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Figure 11: The evolution of the stellar mass density. The data points with symbols are given in Table
2. The solid line shows the global stellar mass density obtained by integrating the best-fit instantaneous
star-formation rate density ψ(z) (Equations 2 and 15) with a return fraction R = 0.27.

However, at z > 0.5 their mass completeness limit is larger than 109.5 M⊙, so we have used

their points only below that redshift. At higher redshifts (as in Moustakas et al. 2013),
nearly all the modern estimates incorporate Spitzer IRAC photometry; we include only

one recent analysis (Bielby et al. 2012) that does not but that otherwise uses excellent

deep, wide-field NIR data in four independent sightlines. We also include measurements
at 0.1 < z ∼

< 4 from Arnouts et al. (2007), Pérez-González et al. (2008), Kajisawa et al.

(2009), Marchesini et al. (2009), Reddy & Steidel (2009), Pozzetti et al. (2010), Ilbert et al.

(2013), and Muzzin et al. (2013). We show measurements for the IRAC-selected sample of
Caputi et al. (2011) at 3 ≤ z ≤ 5 and for UV-selected LBG samples at 4 < z < 8 by Yabe

et al. (2009), González et al. (2011), Lee et al. (2012), and Labbé et al. (2013).
When needed, we have scaled from a Chabrier IMF to a Salpeter IMF by multiplying the

stellar masses by a factor of 1.64 (Figure 4). At high redshift, authors often extrapolate

their SMFs beyond the observed range by fitting a Schechter function. Stellar mass com-
pleteness at any given redshift is rarely as well defined as luminosity completeness, given

the broad range of M/L values that galaxies can exhibit. Unlike the LFs used for the SFRD

calculations where we have tried to impose a consistent faint luminosity limit (relative to
L∗) for integration, in most cases we have simply accepted whatever low-mass limits or in-

tegral values that the various authors reported. Many authors found that the characteristic
mass M∗ appears to change little for 0 < z < 3 (e.g., Fontana et al. 2006, Ilbert et al. 2013)

and is roughly 1011 M⊙ (Salpeter). Therefore, a low-mass integration limit similar to that
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Physics affecting satellite galaxies

• Ram-pressure stripping: galaxy color
• Tidal stripping & disruption: red satellite fraction, intra-

cluster light
• Supernova feedback efficiency: satellite galaxy mass
• Cosmic re-ionization: abundance of low-mass satellites
• Dark matter property: abundance/kinematics of satellites
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Figure 20. Projected autocorrelation functions for galaxies in different stellar mass ranges. Black solid and blue dashed curves give
results for our preferred model applied to the MS and the MS-II, respectively. Symbols with error bars are results for SDSS/DR7
calculated using the same techniques as in Li et al. (2006). The two simulations give convergent results for M∗ > 6× 109M⊙. At lower
mass the MS underestimates the correlations on small scales but still matches the MS-II for rp > 1 Mpc. The model agrees quite well
with the SDSS at all separations for M∗ > 6 × 1010M⊙, overestimating the correlations slightly on small scales, but at smaller masses
the correlations are overestimated substantially, particularly at small separations.

so should, in principle, include cosmic variance effects. This
becomes a significant issue at the smallest masses. No re-
sult is shown for the MS-II in the most massive bin, because
it contains too few galaxies to give a meaningful estimate.
Results from the two simulations converge for galaxies more
massive than 6 × 109M⊙. For smaller masses the MS un-
derpredicts the correlations on small scales but still agrees
with the MS-II for rp > 1 Mpc. This indicates that resolu-
tion limitations begin to affect satellite galaxies in the MS
at higher stellar mass than central galaxies.

For M∗ ! 6×1010M⊙ the model autocorrelations agree
with the SDSS at all separations to better than about 20%.
For M∗ > 6 × 109M⊙, simulation and observation con-
tinue to agree at about the 20% level for rp > 2 Mpc.
This shows that the relation between halo mass and cen-
tral galaxy mass shown in Fig. 9 leads to autocorrelations
for central galaxies as a function of their stellar mass which
are in good agreement with observation. The small remain-
ing off-set may indicate a fluctuation amplitude somewhat
smaller than the σ8 = 0.9 adopted in the simulations. At
yet smaller masses the large-scale correlation amplitude es-
timated from the SDSS disagrees with the model. Plots of

the distribution of these galaxies on the sky show that their
correlations are dominated by a very small number of struc-
tures (just the Coma and Virgo clusters in the lowest mass
bin) which are particularly pronounced in the minority red
population. In these very shallow samples, correlation es-
timates are also significantly distorted by peculiar velocity
effects (e.g. the finger-of-god of the Coma cluster and Virgo-
centric infall). Proper accounting for these effects is beyond
the scope of this paper.

At smaller separations (rp " 1 Mpc) Fig. 20 shows
substantial discrepancies between model and observation for
stellar masses below 6 × 1010M⊙, indicating that there are
more satellite–central pairs in the model than in the real
data. Since the overall abundance of galaxies as a function
of stellar mass matches observation very well (see Fig. 7),
this discrepancy indicates that too large a fraction of the
model galaxies are satellites. Again this is a clear indication
favoring a lower value of σ8 which would result in a lower
abundance of the high-mass halos which host two or more
galaxies in these stellar mass ranges (cf van den Bosch et al.
2007).

Additional insight into possible errors in our treatment

c⃝ 2010 RAS, MNRAS 000, 1–35
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Figure 10. Where satellites were when they quenched: the fraction of currently quiescent satellites that quenched in different host halo regimes versus stellar
mass, in bins of current host halo mass. Region widths indicate uncertainty in satellite initial quiescent fractions from Section 4.1.1. (a) Fraction that were
quenched as a central galaxy prior to first infall. Quenching prior to infall is more important in regimes where satellites fell in more recently: higher mass
satellites and in lower mass host haloes (Section 3.2). (b) Fraction that started quenching in a different host halo (group) prior to falling into their current host
halo, based on tQ, delay from Section 4.3.2. Half of quiescent satellites at Mstar < 1010 M⊙ that are currently in massive clusters began quenching as a satellite in
a group, highlighting the importance of ‘group preprocessing’. (c) Fraction that quenched in their current host halo. Overall, quenching prior to infall dominates
at high satellite mass, group preprocessing is significant at low satellite mass and quenching within the current host halo dominates at intermediate mass.

capacity to grow significantly in stellar mass via star formation af-
ter infall. For now, we ignore any other processes that might affect
satellite stellar mass evolution, such as tidal stripping or merging,
though we discuss these in Appendix A.

To quantify the amount of stellar mass growth via star formation
that satellites at z = 0 have experienced since first infall, we use
our model for satellite SFR evolution given by equation (10), with
the appropriate values of τ cen and the quenching time-scales tQ, delay

and τQ, fade from Section 4.3.2 given a satellite’s stellar mass at
z = 0. We integrate SFR(t) to obtain the stellar mass formed since
first infall, again assuming that 40 per cent of this stellar mass is
lost through supernovae and stellar winds. For a satellite that was
quiescent prior infall, its SFR has been sufficiently low that we can
neglect any stellar mass growth since that time. We then examine
statistical trends by computing the median fractional stellar mass
growth since first infall in bins of stellar mass at z = 0.

Fig. 11 (top) shows the median ratio of a satellite’s stellar mass
at z = 0 to the mass that it had at the time of its first infall, as a
function of its current stellar mass. As before, region widths show
uncertainty in satellite initial quiescent fractions from Section 4.1.1.
Considering all surviving satellites (grey region), their median stel-
lar mass growth since infall is negligible at high mass but is 50
per cent at Mstar < 1010 M⊙. This mass dependence arises because
lower mass satellites are more likely both to have fallen in earlier
when SFRs were higher and to have been active at the time of infall.

The blue and red regions in Fig. 11 show median values for
currently active and quiescent satellites, respectively. Overall, cur-
rently active satellites have experienced significantly less stellar
mass growth since infall than currently quiescent galaxies. While
perhaps counterintuitive, this trend is readily understandable. Even
though active satellites are still growing in stellar mass, to remain
active they necessarily fell in more recently, meaning both lower
SFRs at the time of infall and less time for mass growth after infall.
To understand currently quiescent satellites, note that they are com-
posed of two populations: those that were quiescent prior to infall
and those that quenched after infall. While those that were quiescent
prior to infall did not grow in stellar mass at all, those that quenched
after infall necessarily fell in early, when SFRs were much higher,
and they then spent several Gyr actively forming stars before being
quenched. While the former population dominates at high mass, the
latter dominates at low mass, leading to stellar mass typically having

Figure 11. Satellite stellar mass growth after infall. Top: median ratio of
a satellite’s stellar mass at z = 0 to what it had at first infall versus current
stellar mass, for all satellites (middle, grey), those that remain active (bottom,
blue) and those that are quiescent (top, red) at z = 0. Region widths show
uncertainty in satellite initial quiescent fractions from Section 4.1.1. Bottom:
median ratio of a satellite’s stellar mass at z = 0 to what it would have at
z = 0 had it not quenched after infall. Satellite quenching has little impact
on stellar mass growth: satellite and central galaxy stellar mass growths via
star formation are nearly identical.

more than doubled since infall at Mstar < 1010 M⊙. Thus, low-mass
satellites experience considerable stellar mass growth after infall.

To put this result in context, we compare the stellar mass growth
experienced by satellite versus central galaxies. Fig. 11 (bottom)
shows the median ratio of satellite mass at z = 0 to what it would
be if all satellites that were active at infall remained active to z = 0,
that is, if satellites never quench. This approximately indicates the
ratio of stellar mass that satellites have to what they would have if
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tidal stripping and disruption is included in SAM

but in a very simple way
dependence on galaxy morphology?



Tidal stripping and morphology 5

Figure 2. Time evolution of the stellar component of satellite galaxy. The cross indicates the center of the primary galaxy. The upper
panels shows the C-d merger, while the lower one is the C-b merger. The unit of the coordinate is kpc, and the color shows the density.

Figure 3. The distance and remnant bound mass fraction as a function of time for 3 di↵erent satellite morphologies merging with a
bulge + disc host. The solid lines show the evolution of stellar mass, while the dotted shows one of the dark matter component. The
dashed lines indicate the distances between satellite and center host galaxy.
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N-body simulation of tidal stripping

Chang, Kang+, 2013, MNRAS

stripping efficiency depends on galaxy morphology !



 interpreting galaxy distribution
• Abundance matching: using dark matter halo(subhalo) properties (often at 

accretion) with abundance match to galaxy population (no free parameters, 
still no physics)

• HOD/CLF: halo occupation distribution,conditional luminosity function: put 
galaxy(with given stellar mass/luminosity) in dark matter halo (local 
observations are inputs, no physics input)

• Hydra-simulation: with gas, star formation included,  advantage: model gas 
dynamics directly, but star formation, feedback still included by hand, problems: 
sub-grid physics, resolution effect, over-cooling, time consuming

• Semi-analytical model: combine dark matter halo merger trees with simple 
description of galaxy physics, advantages: computation easy to produce large 
sample of galaxy population, easy to change cosmology & model parameters 
(too many free parameters)

modeling  galaxy formation



Illustris: a state-of-the-art cosmological 
hydrodynamical simulation of galaxy 
formation. Including almost everything!
(AREPO code)

A big step forward to model galaxy 
formation in Lab

Vogelsberger et al. Nature, 2014: 
AREPO (AMR): (75Mpc/h)3 with 12 billion particles,19 Million CPU hours, peak memory: 25TB

End of hydro-simulation of 
galaxy formation?



predictions from illustris

The Illustris Simulation across cosmic time 5

(a) Cosmic SFR density, 35.5Mpc cosmic variance (b) z = 0 stellar mass function, 35.5Mpc cosmic variance

(c) Cosmic SFR density, 106.5Mpc cosmic variance (d) Stellar mass functions, 106.5Mpc cosmic variance

Figure 2. The e↵ect of cosmic variance on the history of cosmic SFR density (left panels) and on the stellar mass function (right
panels). The top panels present a study of our procedure for determining the cosmic variance on the scale of 35.5Mpc (shaded regions)
around the total result from Illustris (dashed curve). This estimate for the cosmic variance is in agreement with the results from 33

mutually-exclusive (35.5Mpc)3 sub-volumes of the full Illustris volume (thin curves). The bottom panels show the estimated cosmic
variance e↵ects on the full box scale, i.e. 106.5Mpc, which are found to be much smaller compared to those on the 35.5Mpc scale.
These are mostly also smaller than the observational uncertainty. Hence, the Illustris volume is large enough so that our results are not
significantly a↵ected by cosmic variance.

the observational uncertainties. Since the parameters of our
galaxy formation physics models were tuned to reproduce
those two quantities using a 35.5Mpc box (Vogelsberger
et al. 2013), it should be expected that these parameter
choices su↵er from the e↵ects of cosmic variance. Indeed,
the history of cosmic SFR density and stellar mass function
as tuned for on the 35.5Mpc box from Vogelsberger et al.
(2013) are not exactly reproduced in the Illustris volume.
In fact, the particular 35.5Mpc box we used can now be
judged as somewhat ‘unlucky’ in the sense that both quan-
tities are approximately 0.1 dex lower in that box compared
to Illustris, such that Illustris moved ⇡ 0.1 dex away from
the observational data in the upwards direction.

In Figs. 2(c) and 2(d) we present ⇢SFR, and the stellar
mass functions at redshifts z = 0, 3, 7, respectively, together

with the estimates for cosmic variance on the scale of the full
simulation box. It is clear by comparison to the upper pan-
els that the cosmic variance is dramatically reduced on the
106.5Mpc scale compared with the 35.5Mpc scale. In partic-
ular, the cosmic variance is smaller than the current obser-
vational uncertainties4. This justifies our statement above
that a cosmological box with a side length of 106.5Mpc has
a large enough volume so that it does not su↵er from detri-
mental cosmic variance e↵ects. We expect these two quan-

4 The cosmic variance shaded regions for the mass functions may
upon first impression appear to have a constant ‘width’, which
may be misleading. In fact, a careful inspection will clearly show
that in the vertical direction the cosmic variance increases with
stellar mass, as expected for rarer systems.

c� 0000 RAS, MNRAS 000, 000–000

The Illustris Simulation across cosmic time 5

(a) Cosmic SFR density, 35.5Mpc cosmic variance (b) z = 0 stellar mass function, 35.5Mpc cosmic variance

(c) Cosmic SFR density, 106.5Mpc cosmic variance (d) Stellar mass functions, 106.5Mpc cosmic variance

Figure 2. The e↵ect of cosmic variance on the history of cosmic SFR density (left panels) and on the stellar mass function (right
panels). The top panels present a study of our procedure for determining the cosmic variance on the scale of 35.5Mpc (shaded regions)
around the total result from Illustris (dashed curve). This estimate for the cosmic variance is in agreement with the results from 33

mutually-exclusive (35.5Mpc)3 sub-volumes of the full Illustris volume (thin curves). The bottom panels show the estimated cosmic
variance e↵ects on the full box scale, i.e. 106.5Mpc, which are found to be much smaller compared to those on the 35.5Mpc scale.
These are mostly also smaller than the observational uncertainty. Hence, the Illustris volume is large enough so that our results are not
significantly a↵ected by cosmic variance.

the observational uncertainties. Since the parameters of our
galaxy formation physics models were tuned to reproduce
those two quantities using a 35.5Mpc box (Vogelsberger
et al. 2013), it should be expected that these parameter
choices su↵er from the e↵ects of cosmic variance. Indeed,
the history of cosmic SFR density and stellar mass function
as tuned for on the 35.5Mpc box from Vogelsberger et al.
(2013) are not exactly reproduced in the Illustris volume.
In fact, the particular 35.5Mpc box we used can now be
judged as somewhat ‘unlucky’ in the sense that both quan-
tities are approximately 0.1 dex lower in that box compared
to Illustris, such that Illustris moved ⇡ 0.1 dex away from
the observational data in the upwards direction.

In Figs. 2(c) and 2(d) we present ⇢SFR, and the stellar
mass functions at redshifts z = 0, 3, 7, respectively, together

with the estimates for cosmic variance on the scale of the full
simulation box. It is clear by comparison to the upper pan-
els that the cosmic variance is dramatically reduced on the
106.5Mpc scale compared with the 35.5Mpc scale. In partic-
ular, the cosmic variance is smaller than the current obser-
vational uncertainties4. This justifies our statement above
that a cosmological box with a side length of 106.5Mpc has
a large enough volume so that it does not su↵er from detri-
mental cosmic variance e↵ects. We expect these two quan-

4 The cosmic variance shaded regions for the mass functions may
upon first impression appear to have a constant ‘width’, which
may be misleading. In fact, a careful inspection will clearly show
that in the vertical direction the cosmic variance increases with
stellar mass, as expected for rarer systems.

c� 0000 RAS, MNRAS 000, 000–000

Figure  4:  Large-scale  characteristics  of  neutral  hydrogen. a,  Column  density

distribution function (CDDF) of neutral hydrogen at z = 3 compared to observations27,

28,46. The dashed vertical line shows the density threshold separating Damped Lyman-α

systems (DLAs) and Lyman Limit systems. The shaded region shows an estimate for

the  CDDF  constrained  by  the  assumption  of  a  power  law  fit  and  the  observed

incidence of Lyman Limit Systems. The vertical error bars represent the s.e.m, and the

horizontal  ones  represent  the  binning.  b, Probability  density  function  of  the  DLA

metallicity in units of solar metallicity at z = 3 is compared to observational findings32.

The  observational  error  bars  show  the  s.e.m.  derived  from

the  number  of  observed  spectra  in  each  metallicity  bin.  Bin  widths  have

been  chosen  to  be  larger  than  the  maximal  uncertainty  in  each  individual

metallicity measurement.
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Figure 13. Distribution of g-r and u-i colours as a function of stellar mass. Top panels: Two-dimensional histograms showing galaxy g-r (left) and u-i (right)
colour versus stellar mass. We do not take dust effects into account and only show intrinsic galaxy colours. The histograms are divided into three different
galaxy populations: star-forming, quiescent, and a mixed region, where both types of galaxies occur. The distinction between star-forming and quiescent is
made based on the star formation rate threshold employed above for the GSMF (see Figure 11). Bottom panels: Distribution of g-r (left) and u-i (right) colours
for all galaxies with M? > 10

9
M� (coloured lines). The integrals over the histograms are normalised to one. The black dashed and solid lines split the total

sample in centrals and satellites.

DM-only N-body simulations combined with large galaxy surveys
like SDSS to constrain the expected baryon conversion efficiency
as a function of halo mass. We present a comparison of our simu-
lation to recent abundance matching estimates (Moster et al. 2013;
Behroozi et al. 2013a; Kravtsov et al. 2014) in Figure 12. Here we
show the stellar mass to halo mass ratio as a function of halo mass.
Abundance matching results are derived by simultaneously ranking
DM haloes obtained through DM-only N-body simulations and ob-
served stellar masses. This implies, however, that a proper compar-
ison to hydrodynamical simulations should be based on the relation
of halo masses obtained from DM-only simulations and the associ-
ated stellar masses as predicted by the corresponding hydrodynam-
ical simulation (Sawala et al. 2013; Munshi et al. 2013). We follow
this procedure using the matched halo sample discussed above.

In Figure 12, we present therefore the stellar mass content of
central galaxies in units of the universal baryon fraction (⌦b/⌦m)
as a function of the matched DM-only halo mass (M200,crit|DM)
for our galaxy population at = 0; the redshift evolution of this
relation is presented in Genel et al. (in prep). Here, we use two
stellar mass estimates: total (M tot

? ) and the stellar mass contained
within our fiducial galaxy radius r? (M<r?

? ). This is to take again
into account uncertainties in the stellar mass estimates for more
massive systems (see Kravtsov et al. 2014, for more details). Fig-
ure 12 demonstrates that we find a reasonable agreement with the

abundance matching results; SF is most efficient close to the mass-
scale of the Milky way (⇠ 1012 M�), where the observationally
inferred baryon conversion efficiency reaches ⇠ 20 � 30% over a
large redshift range. Lower and higher mass haloes have orders of
magnitude smaller baryon conversion efficiencies so that most of
the stellar mass is found in haloes around this mass scale. Repro-
ducing this result is crucial, for example, for predicting the correct
total amount of stellar mass in the Universe. Our simulation results
are well within the 1� observational uncertainties (shaded regions)
demonstrating that our feedback implementation leads to a stellar
mass growth consistent with observations. The 1� regions of the
simulation data are indicated through thin dashed lines. The abun-
dance matching result of Kravtsov et al. (2014) agrees reasonably
well with our results taking into account all stellar mass of haloes
excluding the mass residing in satellites of the host.

We conclude that our feedback models both for SN and AGN
feedback are sufficient to reduce SF roughly to the observed level.
However, we stress that uncertainties in the stellar light assignment
affect the GLF function and GSMF as discussed above. Since abun-
dance matching techniques rely on observationally derived stellar
mass estimates, we have to consider this effect also when compar-
ing the stellar mass content of haloes to that derived through abun-
dance matching. Taking these effects into account we find reason-
able agreement for the GLF, the GSMF, and the amount of stellar

© 0000 RAS, MNRAS 000, 000–000

Figure 5: Non-linear matter power spectrum. The dimensionless total matter power

spectrum, ∆2(k),  of the Illustris simulation (top panel, black line) differs significantly,

due to baryonic effects,  from that  of  the dark matter-only  counterpart  Illustris-Dark

(light blue). Analytic fitting models39,40 (green and pink) do not provide an adequate

description  of  the  hydrodynamic  results.  The  lower  panel  shows  their  relative

difference, highlighting that baryonic effects exceed 1% already on scales smaller than

k ~ 1 h Mpc-1. The theoretical shot noise level (shown as thin dashed lines) has been

subtracted in the measurements.
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Figure 11. AGN bolometric and hard X-ray luminosity functions at z = 0, 1, 2 and 3. Illustris results are shown with thick red lines,
while dashed red lines denote unobscured hard X-ray luminosity functions. A radiative e�ciency of 0.05 is assumed. For bolometric
luminosity functions data points with error bars are from the compilation by Hopkins et al. (2007), while for hard X-ray luminosity
functions additional data points are taken from Ueda et al. (2014). Thin black lines are best-fit evolving double power-law models to
all redshifts from Hopkins et al. (2007) (see their Figures 6 and 7). Overall we find good agreement with the observed AGN luminosity
functions at the bright end, while for z & 1 we overpredict the number of faint AGN, unless obscuration e↵ects are taken into account.

minosity functions large uncertainties remain due to poorly
constrained bolometric corrections (Hopkins et al. 2007; Va-
sudevan & Fabian 2007, 2009; Lusso et al. 2012) and the
uncertain fraction of Compton-thick sources for z & 0.

Keeping these caveats in mind, we compare the Illus-
tris AGN bolometric luminosity function with the bolomet-
ric luminosity function as derived by Hopkins et al. (2007),
which is still the standard reference in the field even though
it does not consider Eddington ratio dependent bolometric
corrections (Vasudevan & Fabian 2007, 2009; Lusso et al.
2012). For the hard X-ray luminosity function we compute
the simulated X-ray luminosities from our bolometric lumi-
nosities by adopting the bolometric corrections of Hopkins
et al. (2007). For the X-ray luminosity function we also do
not consider black holes with Eddington ratios smaller than

10�4, which is a very conservative estimate given that these
objects should be in a radiatively ine�cient regime.

We have also corrected the hard X-ray luminosities as-
suming the obscuration fraction given by equation 4 in Hop-
kins et al. (2007) which is redshift independent, but that did
not lead to any substantial changes. However, if we adopt
the obscuration fraction proposed by Hasinger (2008) (con-
sistent with a more complicated formulation used by Ueda
et al. (2014)) which does include redshift dependence, the
obscuration e↵ects are much more significant. Thus, we plot
both unobscured (dashed lines) and obscured X-ray lumi-
nosities following Hasinger (2008).

We compare our hard X-ray luminosity function with
the most recent compilation by Ueda et al. (2014). By as-
suming bolometric corrections from Hopkins et al. (2007) as

c� 0000 RAS, MNRAS 000, 000–000



Illustris Simulation well reproduces many properties of 
local and high-z galaxies, however

• The formation of low-mass galaxies is still too fast
• The energy feedback from SN and SMBH should be 

very strong and efficient
• Extremely computational cost, not possible to explore: 

cosmology parameters, dark matter property, physics 
of star formation



NIHAO compared to ILLUSTRIS

Reproducing inefficient galaxy formation 3

Table 1. Dark and gas particle masses, m, and force softenings, ϵ, for our zoom-in simulations.

box.level halo mass range mgas ϵgas mDM ϵDM

(M⊙) (M⊙) (pc) (M⊙) (pc)

60.1 6.96× 1011 − 2.79× 1012 3.166×105 397.9 1.735×106 931.4
60.2 8.89× 1010 − 5.55× 1011 3.958×104 199.0 2.169×105 465.7
60.3 2.63× 1010 − 7.12× 1010 1.173×104 132.6 6.426×104 310.5
20.1 4.36× 109 − 2.39× 1010 3.475×103 88.4 1.904×104 207.0
15.1 5.41× 109 − 9.26× 109 2.087×103 74.6 1.144×104 174.6

Fig. 1. The solid and dashed lines show the mean and scatter
from the parent simulations from Dutton & Macciò (2014)
showing that our selected haloes span a wide range in con-
centrations and spins.

Initial conditions for zoom-in simulations were cre-
ated using a modified version of the grafic2 package
(Bertschinger 2001) as described in Penzo et al. (2014). We
chose the refinement level in order to maintain a roughly
constant relative resolution (i.e., ϵDM/Rvir ∼ 0.003), and
∼ 106 dark matter particles per halo. This allows us to reli-
ably probe the mass profile down to 1% of the virial radius
or better across the full range of halo masses we simulate.
The motivation for achieving a constant relative resolution,
rather than a fixed physical resolution is that we wish to
resolve the dark matter mass profile down to the galaxy
half-light radius, which is typically 1-2% of the virial radius
(Kravtsov 2013).

Fig. 2 shows the mass resolution of our simulations
compared to a number of state-of-the-art zoom-in (ERIS -
Guedes et al. 2011; Governato et al. 2012; Aumer et al. 2013;
Marinacci et al. 2014; FIRE - Hopkins et al. 2014) and large
volume (ILLUSTRIS - Vogelsberger et al. 2014; EAGLE -
Schaye et al. 2015) simulations. NIHAO is by far the largest
set of zoom-in simulations resolved with ∼ 106 particles per
halo. The large volume simulations (EAGLE, ILLUSTRIS)
contain many thousands of galaxies, but the fixed force and
mass resolution means that only the highest mass haloes are
well resolved.

The force softenings and particle masses for the highest
refinement level for each simulation are given in Table 1.
Note that the ratio between dark and gas particle masses
is initially the same as the cosmological dark/baryon mass
ratio ΩDM/Ωb ≈ 5.48, and the gas (and star) particle force

softenings are set to be
√

(ΩDM/Ωb) ≈ 2.34 times smaller
than the dark matter particle softenings. Each hydrody-
namic simulation has a corresponding dark matter-only sim-
ulation run at the same mass and force resolution to enable
a study of the effects of galaxy formation on dark halo struc-
ture (Dutton et al. in prep).

2.2 Hydrodynamics

We use a new version of the N-body SPH solver gaso-

line (Wadsley et al. 2004). A complete description of
the new gasoline code including tests is given in Wadsley
et al. (2015). In their paper describing superbubble feed-
back, Keller et al. (2014) described the updates they made to
gasoline. While we do not use their superbubble feedback,
we employ their modified version of hydrodynamics that re-
duces the formation of blobs and improves mixing. We thus

Figure 2. Number of dark matter particles per halo vs halo mass
for NIHAO simulations (black circles) together with state-of-the-
art cosmological simulations in the literature.

refer to our version of gasoline as ESF-gasoline2. The
biggest differences to the hydrodynamics in ESF-gasoline2

come from the small change Ritchie & Thomas (2001) pro-
posed for calculating P/ρ2. Ritchie & Thomas (2001) also
proposed modifying the density calculation to use equal
pressures, but we do not use those densities in the simu-
lations described here.

Diffusion of quantities like metals and thermal energy
between particles has been implemented as described in
Wadsley et al. (2008). Metal diffusion is used, but ther-
mal diffusion is not used because it is incompatible with the
blastwave feedback that delays cooling. Gasoline2 includes
several other changes to the hydrodynamic calculation. The
Saitoh & Makino (2009) timestep limiter was implemented
so that cool particles behave correctly when a hot blastwave
hits them. To avoid pair instabilities, ESF-gasoline2 uses
the Wendland C2 function for its smoothing kernel (Dehnen
& Aly 2012). The treatment of artificial viscosity has been
modified to use the signal velocity as described in Price
(2008). We also increase the number of neighbor particles
used in the calculation of the smoothed hydrodynamic prop-
erties from 32 to 50.

Cooling via hydrogen, helium, and various metal-lines
in a uniform ultraviolet ionizing background is included as

c⃝ 2015 RAS, MNRAS 000, 1–13
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Figure 5. Stellar mass vs halo mass at redshift z = 0 for main simulations (blue points) together with lower mass galaxies in the
zoom-in region (green and red points). The solid black line and shaded region shows the relation from Kravtsov et al. (2014) derived
using halo abundance matching. Our simulation matches this very well. The dashed lines show extrapolations of the abundance matching
relations. For reference, the dotted line shows the cosmic baryon fraction of mass associated with the dark matter halo, indicating that
our simulations convert only a small fraction of the available gas into stars, as observed.

In addition, our central galaxies have a range of physical
spatial resolutions, with baryonic force softenings varying
from 75 pc to 400 pc. This is encouraging as cosmological
simulations do not always converge when changing the phys-
ical resolution (see discussions in Vogelsberger et al. 2014;
Schaye et al. 2015).

Below a halo mass of M200 ∼ 2× 1010M⊙, there starts
to be a discrepancy between different resolutions. The high
resolution simulations (blue points) contain less stars than
lower resolution galaxies. There are two possibilities: Stars
may form more readily in low resolution galaxies or else their
halo masses might be reduced through processes such as
tidal stripping. Tidal stripping is the more likely possibility.
While the lower resolution halos are outside of the main
halos in the z = 0 output, it is possible that they have flown
nearby the main galaxy at some point in the past given
their proximity to more massive halos. The low resolution
halo could form a mass of stars according to its earlier halo
mass, make a close passage of the main halo, and thus have
its halo mass reduced while retaining its stellar mass (for a

study that shows that the outermost mass is stripped first,
see Chang et al. 2013).

Above a halo mass of M200 ∼ 2 × 1010M⊙ the scatter
in the relation is a constant and consistent with observa-
tional constraints of ∼ 0.2 dex (More et al. 2011; Reddick
et al. 2013). Below a halo mass of M200 ∼ 2 × 1010M⊙ the
scatter starts to increase. More high resolution simulations
are needed to verify this feature is not due to the relatively
low resolution of these haloes or the stochasticity of tidal
stripping.

A number of semi-analytic models have been able
to produce galaxies that follow the observed relation be-
tween stellar and halo mass at redshift z ∼ 0 (e.g., Bower
et al. 2006; Somerville et al. 2008; Guo et al. 2011). However,
simultaneously reproducing the evolution has been a chal-
lenge (Weinmann et al. 2012; Hopkins et al. 2014). Fig. 6
shows the evolution of the stellar mass vs halo mass rela-
tion since redshift z = 4 (a look back time of ∼ 12 Gyr).
Here we only show the most massive halo per simulation.
Our simulations show good agreement with the abundance
matching relations from Behroozi et al. (2013) and Moster

c⃝ 2015 RAS, MNRAS 000, 1–13

NIHAO resolves low-mass galaxies with much high resolutions



NIHAO (你好） project: Numerical Investigation of a 
Hundred Astrophysical Objects

(collaboration between PMO and MPIA)
4 Wang et al.

Figure 3. Edge-on views of a subset of NIHAO galaxies after processing through the Monte Carlo radiative transfer code sunrise.
Images are 50 kpc on a side.

described in Shen et al. (2010) and was calculated using
cloudy (version 07.02; Ferland et al. 1998) These calcula-
tions include photo ionization and heating from the Haardt
& Madau (2005) UV background and Compton cooling and
range from 10 to 109 K. In the dense, interstellar medium
gas, we do not impose any shielding from the extragalactic
UV field as the extragalactic field is a reasonable approxi-
mation in the interstellar medium.

2.3 Star Formation and Feedback

Within the hydrodynamic simulations, gas is eligible to form
stars according to the Kennicutt-Schmidt Law when it sat-
isfies a temperature and density threshold. Our fiducial runs
adopt T < 15000 K and nth > 10.3 cm−3. The stars feed
energy back into the interstellar medium (ISM) gas through
blast-wave supernova feedback (Stinson et al. 2006) and ion-
izing feedback from massive stars prior to their explosion as
supernovae, referred to as “early stellar feedback” (Stinson
et al. 2013).

In gasoline , as in Stinson et al. (2013), the pre-SN
feedback consists of 10% of the total stellar flux, 2 × 1050

erg of thermal energy per M⊙ of the entire stellar popula-
tion, being ejected from stars into surrounding gas. Because
of the increased mixing in ESF-gasoline2, the simulations
required more stellar feedback to have their star formation
limited to the abundance matching value at the Milky Way
scale. Thus, we set ϵESF=13%, which gives a better match
to Behroozi et al. (2013) abundance matching results. Ra-
diative cooling is left on for the pre-SN feedback.

In the second, supernova, epoch of feedback, stars of
mass 8 M⊙ < Mstar < 40 M⊙ eject both energy and
metals into the interstellar medium gas surrounding the
region where they formed. Supernova feedback is imple-
mented using the blastwave formalism described in Stinson
et al. (2006). Since the gas receiving the energy is dense, it
would quickly be radiated away due to its efficient cooling.
For this reason, cooling is delayed for particles inside the
blast region for ∼ 30 Myr.

c⃝ 2015 RAS, MNRAS 000, 1–13

Hydro-dynamical simulation: star formation, feedback from supernova and Early Stellar Feedback 
(ionizing feedback from massive stars prior to SN explosion )

Wang L+Kang X et al.,  arXiv:  1503:04818
Butsky I+Kang X et al.,  arXiv:  1503.04814
Tollet E+Kang X et al.,  in preparation
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Figure 7. Evolution of the galaxy star formation rate vs stellar mass relation. NIHAO simulations are shown with blue points, observed
relations by lines and shaded regions as indicated. For reference the dashed lines show a specific star formation rate, SSFR=SFR/Mstar =
0.1 Gyr−1. The average SSFR of our simulations decline by a factor of ∼ 30 from z = 4 to the present day.

.

tion; this work: strong photoionization included as thermal
energy).

Schaye et al. (2015) show that their simulated stellar
mass function follows observations at z = 0, with an excep-
tion at the knee that translates into a low peak efficiency
of star formation around Mhalo ∼ 1012M⊙ (see their figure
8). Those simulations invoke a simple prescription for stel-
lar feedback that injects slightly more thermal energy per
supernova instantaneously after the star particle is formed.
They add AGN feedback to their energy budget, which pre-
vents over cooling in higher mass galaxies.

3.2 Star formation rate vs stellar mass

A consistency check on the stellar mass growth of our simu-
lated galaxies comes from the relation between star forma-
tion rate and stellar mass, sometimes referred to as the “star
forming main sequence.”

Fig. 7 shows the evolution of the star forming main
sequence in our simulations compared with the observed re-
lations (as compiled by Dutton et al. 2010) at z ∼ 0 (Elbaz

et al. 2007, Salim et al. 2007), z ∼ 1 (Elbaz et al. 2007,
Noeske et al. 2007), z ∼ 2 (Daddi et al. 2007) and z ∼ 4
(Daddi et al. 2009, Stark et al. 2009), together with the
compilation by Behroozi et al. (2013). Broadly speaking,
our simulations recover the order of magnitude decline in
SFR at fixed stellar mass observed since z ∼ 4, and match
the observations well at z = 0 and z = 4. At redshift z = 2
however, our simulations under predict the observed SFRs
by a factor of ∼ 2. This is a common feature of galaxy for-
mation models (e.g., Dutton et al. 2010; Somerville & Davé
2014), which tend to have SSFR ∝ (1+z)2.25. This discrep-
ancy may signal a strong decoupling between cosmological
gas accretion and star formation (Weinmann et al. 2011), or
even a modification to the stellar IMF (Davé 2008). How-
ever, given that star formation rates and stellar masses are
subject to a number of systematic biases at the factor of ∼ 2
level, the disagreement is not a major cause for concern.

c⃝ 2015 RAS, MNRAS 000, 1–13
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Figure 5. Same as figure 4 but for the c/a ratio. The green circle in the

upper part of the plot shows the halo shape measurement for the Milky

Way from Ibata et al. (2001).

Table 2. Fitting parameters describing the ratio between the DM
and the hydro halo shape at 0.12 of Rvir.

s1 s2 M0 [M⊙] β

1.848 1.0 3.1× 1011 1.49

where M is the virial mass of the halo. We fixed the value of
the s2 parameter to 1.0 and fit for the other ones using the
Levenberg-Marquardt method, results are reported in table
3.1. The final fitting function is shown by the black line
in figure 7, while the grey area represents the 1σ = 0.156
scatter around the mean.

Figure 6. Shape of the inner part of the halo (0.12 of Rvir) vs. the

star formation efficiency of the halo, parameterized as M⋆/Mvir. The green

point in the upper part of the plot shows the halo shape measurement for

the Milky Way from Ibata et al. (2001). The values for M⋆/Mvir for the DM

only simulation are obtained using the relation from Moster et al (2010).

Figure 7. Ratio between the inner halo shape (c/a) in the NIHAO and

DM simulations as a function of the halo mass. The dashed line is the fitting

function profided in eq. 2, the grey area is the 1σ scatter around the mean.

Fig. 1 also hints that the violent motions of baryons
caused by baryons in the centre of low mass galaxies also
works to make the dark matter rounder. In the low mass
g4.99e10, baryons make little change to the outer shape of
the dark matter. However, the dark matter is almost com-
pletely spherical inside 2 kpc. Fig. 8 shows that is the same
region in which the density profile has been flattened. It
seems that the same mechanism that flattens density cusps
to cores also makes the haloes round.

3.2 Dark matter pseudo phase-space density

Moving beyond the morphology of the dark matter, it is
possible to also consider its kinematics. Taylor & Navarro
(2001) defined “pseudo phase space density” as a simple re-
lationship between matter density and velocity dispersion,
a quantity that describes the matter distribution and kine-
matics of the dark matter together. They defined pseudo
phase space density as:

Q(r) = ρ(r)/σ3(r),

where σ(r),ρ(r) are the velocity dispersion and density of
the halo, respectively. Taylor & Navarro (2001) found that
this simple combination of properties serves as a useful probe
for understanding the origin of the universal DM halo pro-
files.

Using DM-only simulations (Taylor & Navarro 2001)
found that the pseudo phase space density follows a sim-
ple power law, Q(r) ∝ rχ, with χ ∼ −1.875. Since there is
mounting evidence that baryons modify the DM density pro-
file, ρ(r), (e.g. Governato et al. 2010; Teyssier et al. 2012;
Di Cintio et al. 2014, , Tollet et al. 2015), it is worth check-
ing whether baryons also reshape the Q profile.

Fig. 8 presents a comparison between the matter den-
sity profile (left) and the the pseudo phase-space density
Q profile (right) for four galaxies in our sample (the same
galaxies shown in figure 1). Each density profile includes
three lines: the density in the pure DM simulations (black
solid line), the DM density in the hydro simulations (red
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Figure 5. Comparison of the real space correlation functions between the
observed and mock LRGs. The black points with the error bars show the
observed correlation function (Zehavi et al. 2005). The dashed line is that
of the mock galaxy catalog using the best-fit HOD model for the LRGs (Seo
et al. 2008).
(A color version of this figure is available in the online journal.)

LRGs are then assigned to each halo with a central based on the
Poisson distribution with the average of ⟨Nsat(M)⟩. The satel-
lite LRGs inside dark matter halos are distributed following the
Navarro–Frenk–White profile (Navarro et al. 1997). The result-
ing fraction of central LRGs is 93.7%, consistent with that from
the observation (Section 2).

In Figure 5, we show a comparison of the real-space cor-
relation function between the mock and observed (Zehavi
et al. 2005) LRGs. Very good agreement of the results be-
tween the observation and mock catalog can be seen except
for r < 0.5 h−1 Mpc, as was seen by Seo et al. (2008). This
small discrepancy is irrelevant to the current study because the
satellite distribution within halos dominates on this scale and
only central LRGs are used for the statistical analysis below.

4.3. Modeled Ellipticity Correlation Function

The principal axes of each halo in a projected plane are
computed by diagonalizing the momentum of inertial tensor
(e.g., Miralda-Escudé 1991; Croft & Metzler 2000)

Iij =
∑

xixj , (5)

where the sum is over all the particles in the halo. The ellipticity
components of each halo are then estimated in the same way as
those of LRGs (Equation (1)), where the value of q is assumed
to be zero again.

First, we assume that all central galaxies are completely
aligned with their parent dark matter halos. Then the ellipticity
correlation functions of central galaxies are equal to those of
their parent halos. With this assumption, we plot the ellipticity
autocorrelation functions of the mock LRGs, c11 and c22, in
Figure 6. In order to refine the statistics, we averaged over seven
mock LRG samples with different random seeds for assigning
LRGs to dark halos. Interestingly, the ellipticity correlation
function c11 of the mock LRGs has a very similar shape to
the observed function, but the amplitude is about four times
higher. The function c22 is significantly negative at r about a few
h−1 Mpc, compared to the real observed one. In the next section,
we will explain these differences between the observation and
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Figure 6. Ellipticity autocorrelation functions of the central LRGs, (top) c11(r)
and (bottom) c22(r). In both panels, the data points with the error bars are the
measurements from the SDSS, the same ones as those in the bottom panel of
Figure 1. The dashed red lines are results of the mock central LRGs with no
misalignment with their parent halos. The solid red lines are those with the
misalignment parameter of σθ = 35◦. The horizontal axis at the top shows the
corresponding angular scale when all the galaxies are located at z = 1.
(A color version of this figure is available in the online journal.)

simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation

The central-satellite alignment 1297

Figure 2. Same as Fig. 1 but for different subsamples of central and satellite galaxies. In the upper panels, we show f pairs(θ ) for groups with a different

ellipticity, e, of the central galaxy, as indicated. Note that groups with a strongly elongated central galaxy (0.6 ! e < 0.8) are consistent with a perfectly

isotropic distribution of satellites. As we argue in the text, and show in Fig. 3, this owes to the fact that strongly elongated systems are mainly blue, late type

disc galaxies, which show no significant alignment. The lower panels show how f pairs(θ ) depends on the luminosities of the satellite galaxies, Ls, expressed

in units of the luminosity of their central galaxy, Lc. There is a clear indication that fainter satellites are more strongly aligned.

Figure 3. Same as Fig. 1, but for different subsamples of hosts and satellites,

selected according to their 0.1(g − r ) colour. See text for discussion.

galaxies. In particular, satellite galaxies in groups with a blue, central

galaxy are consistent with a perfectly isotropic distribution; there

is no sign of any significant alignment (⟨θ⟩ = 44.◦5 ± 0.◦5). On the

contrary, groups with a red central galaxy show a very pronounced,

major-axis alignment with ⟨θ⟩ = 41.◦5 ± 0.◦2. In addition, red satel-

lites show a significantly stronger major-axis alignment than blue

satellites.

As shown in Weinmann et al. (2006), haloes with a central red

galaxy have a significantly larger fraction of red satellites than a

halo of the same mass, but with a blue central galaxy. This so-called

‘galactic conformity’ implies that the upper and lower panels are

not independent. In Fig. 4, we therefore examine how f pairs(θ ) de-

Figure 4. Same as Fig. 3, except that here we split the sample according to

the colours of both the central and the satellite galaxies, as indicated.

pends on the colours of both the central galaxy and the satellites.

As can be seen, systems with a blue central galaxy show no sig-

nificant alignment, neither with their blue satellites nor with their

red satellites. Systems with a red central galaxy, however, show a

very pronounced alignment, which is significantly stronger for red

satellites than it is for blue satellites. Since redder colours typically

indicate older stellar populations, these results suggest that a sig-

nificant alignment between the orientation of central galaxies and

the distribution of their satellite galaxies only exists in haloes with a

relatively old stellar population. Clearly, such a correlation between

the alignment strength and the age of the stellar population must

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 369, 1293–1302

Yang+ 2006

Teppi & Jing 2009
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Figure 2. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet orientation vec-
tors. The panels and lines are the same as in Fig. 1.

ies are fed with mergers that occur along the filament
within which they are embedded. A similar mechanism
has been proposed for the formation of high-mass DM
halos (Codis et al. 2012).

4.2. Spiral galaxies

Figure 2 shows the correlation for spiral galaxies. The
lines and designations are the same as in Fig. 1. Figure 2
shows that the spin axes of spiral galaxies tend to align
with filaments (upper panel), which is consistent with
previous results (Tempel et al. 2013a). The middle panel

of Fig. 2, indicates that the spin axes of spirals are pref-
erentially perpendicular to the e2-vector. The amount of
correlation is statistically the same as for the e3-vector.
The lower panel of Fig. 2 shows that there is no statisti-
cally significant correlation between the e1-vector (sheet
normal) and the spin axes of spiral galaxies. This implies
that the formation of spiral galaxies is driven by the plane
of the sheet along which most of the matter/gas falls in
to the filaments.
Figure 3 shows the correlation between the spin of spi-

ral galaxies and e2, e3 as a function of distance to the fila-
ment axis. Correlations are considerably stronger (based
on KS-test probabilities) for galaxies that are slightly fur-
ther away (in the range 0.2–0.5h�1Mpc) than those that
are closer (0–0.2h�1Mpc) to the filament axis, which are
consistent with random. This implies that the correla-
tions seen above are actually driven by those galaxies
slightly further way from the main filament axis. This is
consistent with the idea that the origin of the alignment
of angular momentum is related to the regions outside

Figure 3. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet axes. Left (right)
column shows the alignment signal for galaxies that are close to
(slightly away from) the filament axis. Upper/lower panels show
the correlation for e3-/e2-vector.

filaments, namely sheets, where most of the gas is falling
in from. Along filament axes more chaotic motions dom-
inate. Codis et al. (2012) also shows that the correlation
between the rotation axes of DM halos and filaments is
stronger in outer parts of filaments, supporting our find-
ings.

5. DISCUSSION AND CONCLUSIONS

We have examined the alignment of spiral/elliptical
galaxies with respect to the large-scale cosmic filamen-
tary network. The correlation signal is calculated only
for bright galaxies that are located in filaments, where
we also estimate the sheet orientation. The alignment
between galaxy spins and the axis of filaments/sheets is
characterized by the shape of the probability distribution
of cos ✓, where ✓ is the angle between the two vectors.
A significant correlation between the short axes of el-

liptical galaxies and filament axes is found (the KS-test
p-value is 7.7 · 10�9); these galaxies tend to be spin-
ning perpendicular to the filament axis. For bright spiral
galaxies on the other hand the opposite is found: they
tend to be aligned with the host filament axis. Both these
results confirm earlier findings which employed di↵erent
filament finding algorithms (Tempel et al. 2013a).
In this study, no alignment between the spin axes of

spiral galaxies in filaments and the e1-vector (sheet nor-
mal) is found.
A basic interpretation of filament formation suggests

that as a matter flows towards filaments, it wraps its up,
thus aligning the filament axis with its angular momen-
tum (as well as the vorticity of the filamentary matter,
see Libeskind et al. 2013b). Spiral galaxies which con-
dense out of filaments should thus preserve the perpen-
dicular alignment between their spin and the direction of
matter infall. If gas infall from sheets to filaments is lam-
inar, it gives the parallel alignment between the spin axes
of spiral galaxies and orientation of filaments. Assuming

Spin alignment in filaments and sheets 3

The quantity cos ✓ is obtained as a scalar product be-
tween the two unit vectors: cos ✓ = 1 implies that the
galaxy spin is parallel to ei, while cos ✓ = 0 indicates it
is perpendicular.
The probability distribution function should be com-

pared with the null-hypothesis of random mutual orien-
tation of galaxies and vectors. Due to selection e↵ects,
this is not simply a uniform distribution; neither the in-
clination angles of galaxies nor the distribution of fila-
ment axes (with respect to the line-of-sight) have ran-
dom orientations (see Tempel et al. 2013a). A Monte-
Carlo approximation is used to estimate the distribution
of | cos(✓)| for the case where there are no intrinsic corre-
lations, and to find the confidence intervals for this esti-
mate. This approach takes simultaneously into account
the biases in filament detection (redshift-space distor-
tions) and estimation of galaxy spins.
In order to do so, 10000 randomized samples are gen-

erated in which the orientations (inclination and position
angles) of galaxies are kept fixed, but galaxy locations are
randomly changed between filament points. This gives
the true random orientation angle between the galaxy
spin and filament axis. In principle, the randomized dis-
tribution depends how the filament points are chosen:
based on filament axes, location of galaxies etc. How-
ever, for the current dataset it turns out to be insensi-
tive to that. Using randomized samples the median of
the null-hypothesis of a random alignment is calculated
together with its 95% confidence limits.
The galaxy spin vector is not uniquely defined since we

do not know which side of the galaxy is closer to us. In
order to handle this both spin vectors of a given galaxy
are used. Varela et al. (2012) also tested this approach
with several Monte-Carlo simulations and showed that
the procedure recovers correctly the probability distri-
bution function.

4. RESULTS

4.1. Elliptical galaxies

Figure 1 shows the probability distribution P (| cos ✓|)
for the angle ✓ between the short axes of elliptical galax-
ies and the orientation vectors of filaments/sheets. The
probability distribution is calculated for three principal
vectors: e3, the filament axis; e1 the normal to the sheet
where the filament is located and e2 – a vector perpen-
dicular to these two. In each panel of Fig. 1 we also
show the average hcos(✓)i, the average deviation from
uniform distribution h�i (assuming a Gaussian distribu-
tion where 95% confidence limit corresponds to ±2�) and
the Kolmogorov-Smirnov (KS) test probability pKS that
the sample is drawn from a randomized distribution.
The alignment between filament axes and the short

axes of elliptical galaxies is preferentially perpendicular
as found previously (Tempel et al. 2013a). Note however,
that the filament finding algorithm is di↵erent – Tempel
et al. (2013a) used a locally defined morphological fil-
tering, while here the object point process and global
optimization is used. This shows that the result we ob-
tained are rather robust and it does not depend on the
filament finding algorithm (for fixed filament scale).
Moreover, estimating the short axes of elliptical galax-

ies is tricky since early type galaxies are triaxial ellipsoids
seen in projection. Due to the degeneracy between the
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Figure 1. The orientation probability distribution between the
short axes of elliptical galaxies and the filament/sheet axes. Up-

per panel shows the distribution for vectors parallel to filaments;
middle panel shows the distribution for vectors perpendicular to fil-
ament but parallel to the sheet; lower panel shows the distribution
for vectors perpendicular to the sheet where filament is located.
The black line and the grey filled region show the null-hypothesis
together with its 95% confidence limit. The solid red line shows
the measured alignment signal.

intrinsic oblateness of the galaxy and the inclination an-
gle, it is nearly impossible to properly estimate a spin
axis. The visible short axis of elliptical galaxies however,
is easily observed, while the inclination angle is largely
undefined. Tempel et al. (2013a) showed that the corre-
lation signal arises mostly from position angle of galaxies
and not from inclination angle. This implies that the true
alignment signal is even stronger than what we are able
to measure.
The middle and lower panel in Fig. 1 show the align-

ment signal between the short axes of elliptical galaxies
and the e2- and e1-vector, respectively. The correlation
is practically the same for these two vectors. It shows
that the short axes of elliptical galaxies are preferentially
perpendicular to filaments and the sheet orientation is
not important.
Assuming that the short axis of an elliptical galaxy is

aligned with both its spin axis and the spin of the par-
ent DM halo (however, there might be o↵set up to 30�,
see e.g. Hahn et al. 2010), our findings allow us to com-
ment on the formation mechanism of elliptical galaxies.
It is known that elliptical galaxies formed predominantly
through major mergers (e.g. Sales et al. 2012; Wilman
et al. 2013). In mergers, the rotation axis of the resulting
galaxy tends to be perpendicular to the merger direction.
Our results are consistent with a picture wherein galax-

Galaxy Spin to Filament

Tempel & Libeskind 2013
Also see Zhang et al. 2014
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FIG. 2.— The predicted galaxy alignment and comparisons with observa-
tional results.The upper left panel is for all sample, and lower right panel for
central galaxies with different host halo mass. Other panles are for satellite
and central with red/blue colors. The average alignment angle of observed
and model galaxies are labeled in each panel.

right panel we show the predicted alignment for red/blue cen-
tral galaxies divided by Mc, where Mc = 2× 1011M⊙ (dotted
line), and Mc = 1012M⊙ (dashed line). It is found that the pre-
dicted alignment is close to the data with Mc = 2× 1011M⊙,
and the prediction is increasing with critical halo mass.

The exersie presented in the lower right panel of Fig.2 sug-
gests that the observed alignment with dependence on color of
central galaxies is mainly determined by the host halo mass.
We will later see that the halo mass dependence is rooted
in the shape correlation between central galaxy and the host
halo.

In Fig.3, we further show the dependence of alignment on
galaxy properties from the simulation. The solid lines are for
centrals and dashed lines for satellites with dependence on
metallicity, color, stellar mass and halo mass. The upper pan-
els show that the alignment of satellites depends on metallicity
and color, with stronger dependence on metallicity that metal-
rich satellites have very strong alignment. The lower panels
show that the dependence on stellar mass is very weak and
fainter satellites have slightly weaker alignment, in a broad
agreement with the finding in Y06. Note the error-bar for the
point at the bin with biggest mass is big due to small num-
ber statistics. The halo mass dependence in the lower right
panel is close to the dependence from the data that alignment
in massive halos are stronger and consistent with the depen-
dence on stellar mass for central galaxies in the left panel.

In addition to the dependence of galaxy alignment on color,
the data also have shown that the alignment angle is a strong
function of radial distance to the centrals (Brainerd 2005;
Yang et al. 2006). In the left panel of Fig.4 we show the radial
spatial distribution of satellite in the dark matter halo, with de-
pendence on color and metal. It is found that both metal rich
and red satellites are distributed predominately in the central
halo. This distribution agrees with the observational facts that
galaxy properties, such as color, metallicity or morphology
depends strongly on its environment/local density as metal re-
cycle and star formation quenching are more efficient in the
inner halo (ref?). The middle panel in Fig.4 shows the align-
ment of satellites as function as radius. The observational re-
sults of Y06 is shown as triangles. Good agreement between
the simulation and the data is found that satellites residing in
inner halo have stronger alignment with central galaxy than

FIG. 3.— The dependence of alignment strength (2D) on the properties of
simulated galaxies and dark matter halos. See the text for more details.

FIG. 4.— Left panel: The radial distribution of red and blue SGs within
dark matter halos. Middle panel: The dependence of average alignment angle
on radii toward halo center. Right panel: The distribution of mis-alignment
angles between the major axis of CGs and that of dark matter halo within
radius of 0.1, 0.3 and 1.0R200.

their counterparts residing in outer halo.
To understand the origin of satellite alignment with respect

to the central galaxy, theoretical work using N-body simula-
tion often assumed that the shape of central galaxy follows
the overall dark matter halo, and that leads to a strong align-
ment than the data (e.g., Kang et al. 2007). To decrease the
predicted signal, one has to introduce some degree of mis-
alignment between the central galaxy and that of the dark
matter halo without resort to the physical origin (Kang et al.
2007; Agustsson & Brainerd 2010). More physical solution is
proposed that if the central galaxy follows better the shape of
dark matter in the central region, the alignment will be better
reproduced (Faltenbacher et al. 2009; Wang et al. 2014), how-
ever the dependence on galaxy color is hardly reproduced in
these works.

As our SPH simulation includes the stellar component, we
can directly predict the shape of central galaxy and is able to
test the above assumption. The right panel of Fig.4 shows the
alignment angle between central galaxy and dark matter ha-
los with dependence on halo mass. The results for the angle
between the major axis of central galaxy and the overall dark
matter halo were plotted as solid line, dashed line and dot-
ted line for the whole halo (inside of R200), the intermediate
halo (inside of 0.3R200) and the inner halo (inside of 0.1R200)
respectively. Here R200 is the virial radius of spherical halo.
It is found that the shape of central galaxy traces better that
of the inner halo, and this alignment is increasing with halo
mass. The mean mis-alignment angle varies from ∼ 35 − 10
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Figure 2. Angular distribution of sub-halos and neighboring halos along the major axis of host halo, converted to a format compatible
with Yang and Kang’s work. The short and long dashed lines represent the sub-halos and neighboring halos respectively. The open triangles
are theoretical results of Kang et al. (2007) while the solid dots are the observations of Yang et al. (2006). From the left to the right panels,
the lines represent statistical results using the major axis of the outermost part, intermediate part and innermost part of halos, respectively.
The horizontal dotted line indicates a random distribution. For convenience, the legend “neighboring” is replaced with “Nei” here and in
all plots throughout.

To compare with the observational results of Yang
et al. (2006), here we performed the analysis in two-
dimensional space. We first calculate the axes in 3D
space, and then project them onto the X − Y plane.
The angular position is then obtained for every sub-
halo/neighboring halo using its projected position in the
same plane. To generate the random sample, for each
host halo containing N subhalos), we produce N subha-
los in 3D space with a spherical random distribution. In
principle, the produced random sample should share the
same radial distribution of the real subhalos in each host
halo. However, as our calculation is only dependent on
the angular separation, our results are not affected by
this requirement.
In Figure 2 we show the alignment along the major

axes of central galaxies. The left, middle and right pan-
els show the results assuming that the central galaxies
follow the shape of their host halos defined at the outer,
intermediate and inner axes. In each panel the dotted
and dashed lines are for subhalos and neighboring halos,
respectively. For comparison with other results, we also
plot the observational work of Yang et al. (2006), and
the theoretical one by Kang et al. (2007) as circles and
triangles in each panel.
Figure 2 shows that both subhalos and neighboring ha-

los are aligned with the major axes of central galaxies.
The signal is stronger than the data (solid points) if the
central galaxy follows the shape of the dark matter halo
at the outer or intermediate axes (left and middle pan-
els). Our results are consistent with those of Kang et
al. (2007), who used satellite galaxies from their Semi-
analytic models(SAMs) and have found strong alignment
if central galaxy follows the shape of the whole dark mat-
ter halo. Kang et al. (2007) pointed out that some ob-
servational effects, such as the flux-limit, redshift-space
distortions and the galaxy group finder, could cause a
shallowing of the alignment signal, but these would not
be enough to reconcile the simulations with observations.
They further proposed that the observed alignment sig-
nal could be reproduced if the spin of the central galaxy

aligns with that of dark matter halo.
Our result shows that there may be another way to re-

move such a discrepancy with observations. As showed in
the right panel of Figure 2, the predicted alignment sig-
nal is close to the data if the shape of the central galaxy
follows the shape defined at the inner halo region. This
is also consistent with the results of Faltenbacher et al.
(2009) in which they also found only a weak misalign-
ment if using the inner halo to define the shape of central
galaxy, although they use a different method to measure
the halo shape.
It is also found from Figure 2 that the alignment

of neighboring halos is similar to that of the subhalos.
There seems to be a slight evolution effect that subha-
los’ alignment is stronger if the central galaxy follows the
outer shape of dark matter halo (left panel). However,
the predicted alignment signal is too strong in this case,
thus it can not account for the observed color depen-
dence of satellite alignment. If the central galaxy follows
the shape of the inner axis, and blue satellite galaxies
are recently accreted from neighboring halos, then their
alignment should be identical to that of the red satellites
(subhalos in our case). To explain the observed color de-
pendence, it will require that either blue (red) satellites
are not random sample of neighboring halos (subhalos).
We will later investigate if the color dependence arises
from the assembly bias of satellite galaxies.
The right panel of Figure 2 shows that if the central

galaxy follows the inner shape of the dark matter halo,
then the predicted alignment signal is more or less consis-
tent with the data. However, it is not implied that this is
the only way to reproduce the observed alignment signal.
It indicates that some degree of misalignment between
the central galaxy and the overall shape of dark matter
halo has to be assumed. For example, Kang et al. (2007)
and Agustsson & Brainerd (2010) both have found that
if the minor axis of central galaxies follows the angular
momentum of the dark matter halo, then the alignment
of satellites is also closer to the observational data.
The observed alignment effect can also be reproduced

Kang,Lin et al. 2007,2014a, 2014b
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FIG. 4.— Left panel: radial distribution of red and blue, metal-rich (top 30% by order ranking), and metal poor (bottom 30% by order ranking) SGs within dark
matter halos. Middle panel: dependence of average alignment angle on radius from the halo center. Right panel: distribution of mis-alignment angles between
the major axes of CGs and those of dark halos measured within radii of 0.1, 0.3, and 1.0R200.

follow that of dark matter. On the other hand, the stellar com-
ponent of centrals is also greatly shaped by the gravitational
force of the dark matter in the inner halo. The combination
of these two effects leads to a better alignment for the metal-
rich/red satellites than their metal-poor/blue counterparts. As
to the dependence on color of centrals, this is related to the
halo mass of the centrals – bluer centrals most likely reside in
relatively lower-mass halos where the alignment between the
central stellar component and the inner halo shape becomes
weaker.

4. CONCLUSION AND DISCUSSION
In this Letter, we carry out a study of galaxy alignment us-

ing a cosmological simulation including gas cooling, star for-
mation, and supernova feedback, which enables a direct pre-
diction for the shape of CGs and the galaxy properties. We
find that the predicted alignment between the CG and the dis-
tribution of satellites agrees with the observations. Further-
more, with a simple assumption about the halo mass of blue
and red centrals, the dependence on color for both centrals
and satellites is also reproduced. We also identify that the
strongest dependence of the alignment is with metallicity of
satellites, which should be testable using future data.
The main source of galaxy alignment is the non-spherical

nature of CDM halos, as shown by many previous stud-
ies (e.g., Agustsson & Brainerd 2006a,b; Kang et al. 2007).
However, the predicted strength of the alignment is too strong
if the shape of the CG follows the overall shape of the dark
matter halo. From our study, we find that the shape of the CG
better follows the halo in the inner region, and the average
mis-alignment is about 20deg (see Figure 4), similar to the ex-
pected or inferred values in previous studies (e.g., Wang et al.
2008; Faltenbacher et al. 2009). As the most red/metal-rich
satellites stay in the inner halo, they naturally follow the
shape of the dark matter halo in that region. This leads to
a strong alignment between red satellites with centrals. Fur-
thermore, as the alignment between the CG and inner halo

increases with halo mass and red centrals predominately pop-
ulate massive halos, it explained the observed fact that red
central shows stronger alignment with satellites than blue cen-
trals. Although the prediction for the alignment of blue cen-
trals using our simulation fails because of the too blue col-
ors of the most massive central galaxies, the exercises for the
alignment dependence on halo mass have given hints that sim-
ulations with AGN feedback (e.g., Vogelsberger et al. 2013;
Tenneti et al. 2014) should be helpful to solve this problem.
The non-spherical nature of dark matter halos is one the

most prominent features of structure formation in a CDM uni-
verse, as the mass accretion and mergers predominately occur
along the cosmic web or the filament (e.g., Wang et al. 2005).
It also naturally produces the galaxy alignment on very large
scales up to ∼ 70h−1Mpc (Li et al. 2013). Accurate predic-
tions for galaxy alignment on large scales is crucial to cosmo-
logical applications, such as estimating the systematic error
used in weak lensing measurements. With the proper mod-
eling of galaxy shapes from hydrodynamical simulation, we
will be able to make predictions for galaxy alignment on large
scales in a forthcoming paper.
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Figure 2. The formation of structure according to the Zel’dovich
formalism. The sequence starts with the left most panel which
shows an ellipsoidal overdensity from two perpendicular angles.
The overdensity collapse proceeds most strongly along one axis
to form a sheet, followed by the full contraction of the second axis
to form a filament. At last, full collapse takes place resulting in a
3D virialized structure.

These feeble environments are identified the least by the
NEXUS tidal and NEXUS velshear approaches, while
NEXUS+ finds a much richer network of such structures.
It suggests that approaches based on the tidal field (Hahn
et al. 2007a; Forero-Romero et al. 2009) or velocity shear
field (Ho↵man et al. 2012) are not very sensitive to the more
tenuous structures. Similar di↵erences between methods
can be found when analysing the cosmic walls (CWJ13).

3.3 The Zel’dovich formalism and NEXUS
environments

The Zel’dovich formalism (Zel’dovich 1970) o↵ers a natural
way of describing anisotropic collapse and therefore the for-
mation of the cosmic web. It has been found to give a good
description of structure formation in the linear and mildly
non-linear stages. This suggests that the Zel’dovich formal-
ism can o↵er a reasonable description of large-scale struc-
tures, given that the cosmic web is at the transitional stage
between linear primordial and fully non-linear structures.
This raises questions about the common points as well as
the di↵erences between NEXUS and Zel’dovich predictions.

The Zel’dovich formalism o↵ers a first-order Lagrangian
approximation to the formation and evolution of cosmic
structure. In the Zel’dovich approximation, the motion of a
fluid element is determined by the primordial density fluctu-
ations, following a ballistic displacement approach. At some
time t, the Eulerian position x(t) of the fluid element is given
by

x(t) = q+D(t) r (q) , (1)

where q is the initial or Lagrangian position of the element.
The quantity D(t) denotes the linear growth factor and  is
the Lagrangian displacement potential (Peebles 1980). The
latter is the primordial linearly extrapolated gravitational
potential, up to a constant multiplication factor. Using this
prescription, we can describe how an initial mass element
⇢̄d3q gets mapped at a later time t to ⇢(x)d3x. The mass

within the mapped volume is conserved, i.e. ⇢̄d3q = ⇢(x)d3x,
which, after a few algebraic manipulations, leads to

⇢(x) =
⇢̄

[1�D �
1

(q)] [1�D �
2

(q)] [1�D �
3

(q)]
. (2)

Here ⇢(x) denotes the density at Eulerian position x and ⇢̄
symbolizes the mean cosmic density. The three �

1

> �
2

> �
3

quantities denote the eigenvalues of the deformation tensor

 ij(q) =
@2 (q)
@qi@qj

. (3)

Similarly to the NEXUS techniques, the Zel’dovich for-
malism can be used to identify the cosmic web components.
This can be easily appreciated from eq. (2), which describes
the evolution of the density at a later time in terms of the
primordial matter distribution. The formation of pancakes,
filaments and clusters is dictated by the eigenvalues of the
deformation tensor, as given in Table 2. For example, clus-
ters form in the regions with three positive eigenvalues. The
evolution of these domains is via a well defined sequence
as illustrated in Fig. 2, where we sketch the collapse of an
ellipsoidal overdensity. As time evolves, the overdensity con-
tracts along all directions, but most strongly along the di-
rection corresponding to the largest eigenvalue �

1

. The full
collapse along this axis takes place when 1 � D(t) �

1

! 0,
resulting in a sheet as shown in panel b). The contraction
follows along the second axis to form a filamentary configu-
ration and ends with the collapse along the third direction
to form a 3D virialized object. This suggests that one can
define a sequence of morphologies, each one associated with
a well defined stage of the anisotropic gravitational collapse.
As shown in Fig. 2, these morphologies evolve in time and
moreover, at any one epoch, we can find a range of interme-
diate states.

Out of all the di↵erent versions of the NEXUS tech-
nique, NEXUS tidal shares the largest number of common
points with the Zel’dovich formalism. For example, both ap-
proaches use the eigenvalues of the tidal tensor for iden-
tifying the cosmic web components. But, most crucially,
NEXUS tidal uses the tidal tensor computed at the redshift
for which we need to identify the di↵erent morphological
components. In contrast, the Zel’dovich formalism always
uses the primordial tidal tensor, neglecting non-linear ef-
fects that arise during the subsequent gravitational collapse
of matter. Such non-linear e↵ects are important when study-
ing large-scale structures, given that the cosmic web repre-
sents the transitional stage between linear structures and
fully developed non-linear objects. The eigenvalue threshold
used to characterize morphological components represents
another crucial di↵erence between the two methods. Within
the Zel’dovich approximation, the distinction between posi-
tive versus negative eigenvalues is important since they lead
to di↵erent morphological structures. But using such a cri-
terion for the present time leads to unrealistic structures
(Hahn et al. 2007a; Forero-Romero et al. 2009), which is
why NEXUS tidal uses a non-zero eigenvalue threshold that
varies with redshift, optimized for the detection of the most
prominent cosmic web components (CWJ13).

In spite of these di↵erences, there is a good correspon-
dence between the predictions of the Zel’dovich formalism
and the NEXUS detections, as seen in Fig. 3. Except small
di↵erences, we find the same large-scale structures in the
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Figure 2. The formation of structure according to the Zel’dovich
formalism. The sequence starts with the left most panel which
shows an ellipsoidal overdensity from two perpendicular angles.
The overdensity collapse proceeds most strongly along one axis
to form a sheet, followed by the full contraction of the second axis
to form a filament. At last, full collapse takes place resulting in a
3D virialized structure.

These feeble environments are identified the least by the
NEXUS tidal and NEXUS velshear approaches, while
NEXUS+ finds a much richer network of such structures.
It suggests that approaches based on the tidal field (Hahn
et al. 2007a; Forero-Romero et al. 2009) or velocity shear
field (Ho↵man et al. 2012) are not very sensitive to the more
tenuous structures. Similar di↵erences between methods
can be found when analysing the cosmic walls (CWJ13).

3.3 The Zel’dovich formalism and NEXUS
environments

The Zel’dovich formalism (Zel’dovich 1970) o↵ers a natural
way of describing anisotropic collapse and therefore the for-
mation of the cosmic web. It has been found to give a good
description of structure formation in the linear and mildly
non-linear stages. This suggests that the Zel’dovich formal-
ism can o↵er a reasonable description of large-scale struc-
tures, given that the cosmic web is at the transitional stage
between linear primordial and fully non-linear structures.
This raises questions about the common points as well as
the di↵erences between NEXUS and Zel’dovich predictions.

The Zel’dovich formalism o↵ers a first-order Lagrangian
approximation to the formation and evolution of cosmic
structure. In the Zel’dovich approximation, the motion of a
fluid element is determined by the primordial density fluctu-
ations, following a ballistic displacement approach. At some
time t, the Eulerian position x(t) of the fluid element is given
by

x(t) = q+D(t) r (q) , (1)

where q is the initial or Lagrangian position of the element.
The quantity D(t) denotes the linear growth factor and  is
the Lagrangian displacement potential (Peebles 1980). The
latter is the primordial linearly extrapolated gravitational
potential, up to a constant multiplication factor. Using this
prescription, we can describe how an initial mass element
⇢̄d3q gets mapped at a later time t to ⇢(x)d3x. The mass

within the mapped volume is conserved, i.e. ⇢̄d3q = ⇢(x)d3x,
which, after a few algebraic manipulations, leads to
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Similarly to the NEXUS techniques, the Zel’dovich for-
malism can be used to identify the cosmic web components.
This can be easily appreciated from eq. (2), which describes
the evolution of the density at a later time in terms of the
primordial matter distribution. The formation of pancakes,
filaments and clusters is dictated by the eigenvalues of the
deformation tensor, as given in Table 2. For example, clus-
ters form in the regions with three positive eigenvalues. The
evolution of these domains is via a well defined sequence
as illustrated in Fig. 2, where we sketch the collapse of an
ellipsoidal overdensity. As time evolves, the overdensity con-
tracts along all directions, but most strongly along the di-
rection corresponding to the largest eigenvalue �
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. The full
collapse along this axis takes place when 1 � D(t) �
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! 0,
resulting in a sheet as shown in panel b). The contraction
follows along the second axis to form a filamentary configu-
ration and ends with the collapse along the third direction
to form a 3D virialized object. This suggests that one can
define a sequence of morphologies, each one associated with
a well defined stage of the anisotropic gravitational collapse.
As shown in Fig. 2, these morphologies evolve in time and
moreover, at any one epoch, we can find a range of interme-
diate states.

Out of all the di↵erent versions of the NEXUS tech-
nique, NEXUS tidal shares the largest number of common
points with the Zel’dovich formalism. For example, both ap-
proaches use the eigenvalues of the tidal tensor for iden-
tifying the cosmic web components. But, most crucially,
NEXUS tidal uses the tidal tensor computed at the redshift
for which we need to identify the di↵erent morphological
components. In contrast, the Zel’dovich formalism always
uses the primordial tidal tensor, neglecting non-linear ef-
fects that arise during the subsequent gravitational collapse
of matter. Such non-linear e↵ects are important when study-
ing large-scale structures, given that the cosmic web repre-
sents the transitional stage between linear structures and
fully developed non-linear objects. The eigenvalue threshold
used to characterize morphological components represents
another crucial di↵erence between the two methods. Within
the Zel’dovich approximation, the distinction between posi-
tive versus negative eigenvalues is important since they lead
to di↵erent morphological structures. But using such a cri-
terion for the present time leads to unrealistic structures
(Hahn et al. 2007a; Forero-Romero et al. 2009), which is
why NEXUS tidal uses a non-zero eigenvalue threshold that
varies with redshift, optimized for the detection of the most
prominent cosmic web components (CWJ13).

In spite of these di↵erences, there is a good correspon-
dence between the predictions of the Zel’dovich formalism
and the NEXUS detections, as seen in Fig. 3. Except small
di↵erences, we find the same large-scale structures in the
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is subhalo accretion universal?

Kang & Wang in preparation, 2015
• subhaloes are accreted along halo major axis
• subhaloes are accreted along e3 only in massive haloes
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The quantity cos ✓ is obtained as a scalar product be-
tween the two unit vectors: cos ✓ = 1 implies that the
galaxy spin is parallel to ei, while cos ✓ = 0 indicates it
is perpendicular.
The probability distribution function should be com-

pared with the null-hypothesis of random mutual orien-
tation of galaxies and vectors. Due to selection e↵ects,
this is not simply a uniform distribution; neither the in-
clination angles of galaxies nor the distribution of fila-
ment axes (with respect to the line-of-sight) have ran-
dom orientations (see Tempel et al. 2013a). A Monte-
Carlo approximation is used to estimate the distribution
of | cos(✓)| for the case where there are no intrinsic corre-
lations, and to find the confidence intervals for this esti-
mate. This approach takes simultaneously into account
the biases in filament detection (redshift-space distor-
tions) and estimation of galaxy spins.
In order to do so, 10000 randomized samples are gen-

erated in which the orientations (inclination and position
angles) of galaxies are kept fixed, but galaxy locations are
randomly changed between filament points. This gives
the true random orientation angle between the galaxy
spin and filament axis. In principle, the randomized dis-
tribution depends how the filament points are chosen:
based on filament axes, location of galaxies etc. How-
ever, for the current dataset it turns out to be insensi-
tive to that. Using randomized samples the median of
the null-hypothesis of a random alignment is calculated
together with its 95% confidence limits.
The galaxy spin vector is not uniquely defined since we

do not know which side of the galaxy is closer to us. In
order to handle this both spin vectors of a given galaxy
are used. Varela et al. (2012) also tested this approach
with several Monte-Carlo simulations and showed that
the procedure recovers correctly the probability distri-
bution function.

4. RESULTS

4.1. Elliptical galaxies

Figure 1 shows the probability distribution P (| cos ✓|)
for the angle ✓ between the short axes of elliptical galax-
ies and the orientation vectors of filaments/sheets. The
probability distribution is calculated for three principal
vectors: e3, the filament axis; e1 the normal to the sheet
where the filament is located and e2 – a vector perpen-
dicular to these two. In each panel of Fig. 1 we also
show the average hcos(✓)i, the average deviation from
uniform distribution h�i (assuming a Gaussian distribu-
tion where 95% confidence limit corresponds to ±2�) and
the Kolmogorov-Smirnov (KS) test probability pKS that
the sample is drawn from a randomized distribution.
The alignment between filament axes and the short

axes of elliptical galaxies is preferentially perpendicular
as found previously (Tempel et al. 2013a). Note however,
that the filament finding algorithm is di↵erent – Tempel
et al. (2013a) used a locally defined morphological fil-
tering, while here the object point process and global
optimization is used. This shows that the result we ob-
tained are rather robust and it does not depend on the
filament finding algorithm (for fixed filament scale).
Moreover, estimating the short axes of elliptical galax-

ies is tricky since early type galaxies are triaxial ellipsoids
seen in projection. Due to the degeneracy between the
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Figure 1. The orientation probability distribution between the
short axes of elliptical galaxies and the filament/sheet axes. Up-

per panel shows the distribution for vectors parallel to filaments;
middle panel shows the distribution for vectors perpendicular to fil-
ament but parallel to the sheet; lower panel shows the distribution
for vectors perpendicular to the sheet where filament is located.
The black line and the grey filled region show the null-hypothesis
together with its 95% confidence limit. The solid red line shows
the measured alignment signal.

intrinsic oblateness of the galaxy and the inclination an-
gle, it is nearly impossible to properly estimate a spin
axis. The visible short axis of elliptical galaxies however,
is easily observed, while the inclination angle is largely
undefined. Tempel et al. (2013a) showed that the corre-
lation signal arises mostly from position angle of galaxies
and not from inclination angle. This implies that the true
alignment signal is even stronger than what we are able
to measure.
The middle and lower panel in Fig. 1 show the align-

ment signal between the short axes of elliptical galaxies
and the e2- and e1-vector, respectively. The correlation
is practically the same for these two vectors. It shows
that the short axes of elliptical galaxies are preferentially
perpendicular to filaments and the sheet orientation is
not important.
Assuming that the short axis of an elliptical galaxy is

aligned with both its spin axis and the spin of the par-
ent DM halo (however, there might be o↵set up to 30�,
see e.g. Hahn et al. 2010), our findings allow us to com-
ment on the formation mechanism of elliptical galaxies.
It is known that elliptical galaxies formed predominantly
through major mergers (e.g. Sales et al. 2012; Wilman
et al. 2013). In mergers, the rotation axis of the resulting
galaxy tends to be perpendicular to the merger direction.
Our results are consistent with a picture wherein galax-
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Figure 2. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet orientation vec-
tors. The panels and lines are the same as in Fig. 1.

ies are fed with mergers that occur along the filament
within which they are embedded. A similar mechanism
has been proposed for the formation of high-mass DM
halos (Codis et al. 2012).

4.2. Spiral galaxies

Figure 2 shows the correlation for spiral galaxies. The
lines and designations are the same as in Fig. 1. Figure 2
shows that the spin axes of spiral galaxies tend to align
with filaments (upper panel), which is consistent with
previous results (Tempel et al. 2013a). The middle panel

of Fig. 2, indicates that the spin axes of spirals are pref-
erentially perpendicular to the e2-vector. The amount of
correlation is statistically the same as for the e3-vector.
The lower panel of Fig. 2 shows that there is no statisti-
cally significant correlation between the e1-vector (sheet
normal) and the spin axes of spiral galaxies. This implies
that the formation of spiral galaxies is driven by the plane
of the sheet along which most of the matter/gas falls in
to the filaments.
Figure 3 shows the correlation between the spin of spi-

ral galaxies and e2, e3 as a function of distance to the fila-
ment axis. Correlations are considerably stronger (based
on KS-test probabilities) for galaxies that are slightly fur-
ther away (in the range 0.2–0.5h�1Mpc) than those that
are closer (0–0.2h�1Mpc) to the filament axis, which are
consistent with random. This implies that the correla-
tions seen above are actually driven by those galaxies
slightly further way from the main filament axis. This is
consistent with the idea that the origin of the alignment
of angular momentum is related to the regions outside

Figure 3. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet axes. Left (right)
column shows the alignment signal for galaxies that are close to
(slightly away from) the filament axis. Upper/lower panels show
the correlation for e3-/e2-vector.

filaments, namely sheets, where most of the gas is falling
in from. Along filament axes more chaotic motions dom-
inate. Codis et al. (2012) also shows that the correlation
between the rotation axes of DM halos and filaments is
stronger in outer parts of filaments, supporting our find-
ings.

5. DISCUSSION AND CONCLUSIONS

We have examined the alignment of spiral/elliptical
galaxies with respect to the large-scale cosmic filamen-
tary network. The correlation signal is calculated only
for bright galaxies that are located in filaments, where
we also estimate the sheet orientation. The alignment
between galaxy spins and the axis of filaments/sheets is
characterized by the shape of the probability distribution
of cos ✓, where ✓ is the angle between the two vectors.
A significant correlation between the short axes of el-

liptical galaxies and filament axes is found (the KS-test
p-value is 7.7 · 10�9); these galaxies tend to be spin-
ning perpendicular to the filament axis. For bright spiral
galaxies on the other hand the opposite is found: they
tend to be aligned with the host filament axis. Both these
results confirm earlier findings which employed di↵erent
filament finding algorithms (Tempel et al. 2013a).
In this study, no alignment between the spin axes of

spiral galaxies in filaments and the e1-vector (sheet nor-
mal) is found.
A basic interpretation of filament formation suggests

that as a matter flows towards filaments, it wraps its up,
thus aligning the filament axis with its angular momen-
tum (as well as the vorticity of the filamentary matter,
see Libeskind et al. 2013b). Spiral galaxies which con-
dense out of filaments should thus preserve the perpen-
dicular alignment between their spin and the direction of
matter infall. If gas infall from sheets to filaments is lam-
inar, it gives the parallel alignment between the spin axes
of spiral galaxies and orientation of filaments. Assuming

  

二 . 星系角动量分布与大尺度结构。

Yang, X. et al. 2006, MNRAS

观测 数值模拟

● 潮汐场理论预言：星系角动量方向和大尺度方向——垂直！

● 问题：怎么样来理解观测现象？

研究背景

galaxy/halo spin with LSS

TTT theory predicts: halo spin is perpendicular to e3 (or filament)



Kang & Wang , 2015 in 
preparation

well explains the observed 
correlation between galaxy 
spin and LSS

if the orbit angular momentum is transfered to halo spin, it is 
naturally expected that: 

• for massive haloes, spin is perpendicular to filament
• for low-mass haloes, spin is parallel to filament

alignment between subhalo accretion and filament



Our Milky Way is a good laboratory to test CDM and 
model for galaxy formation



Missing satellite problem of the Milky Way
Milky-Way Satellites 3

SN only

SN+Reion 

Figure 2. The luminosity function of satel-
lite galaxies in a Milky-Way type halo.
Data points (circles) are from Koposov
et al. (2008). Dashed line is model result
with supernova feedback only, and solid line
(with Poisson error) is model with photo
ionization included.

Figure 3. The mass-to-light ratio of satel-
lite galaxies. Data points are from com-
pilation of Simon & Geha (2007). Solid
line is the model prediction with 20th and
80th percentiles of the distribution (dashed
lines). Here we assume that measured total
mass (inside luminous radii) of satellites are
5% of their present dark matter mass.

3. Result

3.1. Luminosity function of satellites

In Fig.2 we show the model luminosity function (LF) of satellites with comparison to
the recent results of Koposov et al. (2008) from SDSS DR5. Koposov et al measured the
LF up to MV = −2, and found that LF can be described by a power law with slope of
0.1. At the very faint end (MV > −5) the solid circle points in Fig.2 are extrapolated
assuming the satellite galaxies following a NFW density distribution, and empty circles
are assumed with an isothermal distribution (See Koposov et al. 2008). It can be seen
that if there is only supernova feedback (dashed line), the predicted total number of
satellites are more than observed by a factor of 3. With the suppression of gas accretion
by photoionization, the LF (solid line) can be brought into abroad agreement with the
data. This is expected that the decrease of gas content produce less stellar mass.

Compared to the model prediction of Benson et al. (2002), our model produces more
luminous satellites with MV < −15. This success is credited to the combination of
improved models for halo merger tree and galaxy merging time-scales. The merger tree
used by Benson et al. (2002) is based on Cole et al. (2000), which produces too many
recent major mergers. As the galaxy merging time is shorter for major merger, so less
is the number of survived massive satellites. Also we use the new fitting formula from
Jiang et al. (2008) for galaxy merging time-scales, which is longer than the often used
dynamical friction time scale from Lacey & Cole (1993).

As we can see that without photoionization, there are only a few satellites fainter than
MV = −5. This is because hot gas can not cool via hydrogen line emission in halos
with virial temperature below 104K (∼ 109M⊙) and H2 cooling is very inefficient. The
solid line shows that those faint satellites formed in halos with virial temperature just
over 104K, but have their gas content strongly suppressed by photoionization (Similar
conclusion was also obtained by Kravtsov et al. 2004). In our model, it is difficult to
produce satellite (MV ≃ −3) with number around 30, and this favors the satellites to
have an isothermal density distribution.

The luminosity function of MW can 
be obtained:
•Cosmic re-ionization suppress gas 
cooling in low-mass halo (V<50 
km/s or M<10^9 solar mass)
•Most MW satellites are in ~10^9 
solarmass haloes at accretion

Kang 2008

Central mass and luminosity of Milky Way satellites 3

satellites. Secondly, satellites we see today can be a biased sam-
ple of the overall dark matter halo population since they are the
surviving population which possibly form prior to reionisation
(Moore et al. 2006). For these reasons a full numerical inspec-
tion of origin of the narrow range forM0.3 is needed.
In order to compare numerical results to observations, for

each simulated satellite we need both its luminosity L and its
inner mass M0.3. The first quantity is a direct outcome of our
semi-analytical model, whilst to compute the second quatity we
proceeded in the following way: at time of accretion of each
satellite we compute the density profile directly from its particle
distribution in the N-body simulation. The resulting numerical
density profile is then fitted with an NFW profile (Eq. 1); dur-
ing the fitting procedure we treat both rs and δc as free param-
eters. Their values, and associated uncertainties, are obtained
via a χ2 minimization procedure (see Macciò et al. 2008 for
more details). We are only interested in dark matter haloes that
host a galaxy according to our semi-analytic model; given that
gas cooling is allowed only in haloes withM ∼

> 108h−1M⊙ (i.e.
Tvir > 104K) this implies that, on average, we have more than
1,000 particles per halo at time of accretion, which is sufficient
to obtain a robust estimation of the density profile parameters
(Macciò et al. 2007). Under the assumption that the density pro-
file within 300 pc does not evolve from the time of accretion to
z = 0 we can compute, for each satellite, the present value of
M0.3 using equation 2.
The upper panel in Figure 2 shows the results for the rela-

tion between the mass within 300 pc and luminosity as obtained
in our numerical model (red dots) versus the observational re-
sults (black dots with error bars). Here we plot results only for
simulated satellites that satisfy the detection threshold of the
SDSS as determined by Koposov et al. 2007. This means that
the satellite luminosity and distance have to satisfy the follow-
ing relation log(R/kpc) < 1.04− 0.228 Mv. The mean and the

FIG. 2.— Mass within 300 pc versus luminosity. Red dots show results from
our numerical model, black points with error bars are the observational results
from S08. Upper panel: no correction for the concentration related density
evolution. Lower panel: correction included (see text).

scatter of observational data are both well reproduced by our
numerical results up to a luminosity of L = 2×106L⊙, after this
point simulations seem to suggest an increase with luminos-
ity of M0.3, which is not present in the data (even if only three
satellite galaxies have a luminosity greater than 106L⊙).
These results are obtained under the assumption of no evo-

lution for the parameters defining the density profile (rsandδc).
This assumption is motivated by the detailed numerical study
carried out by Kazantzidis et al. 2004 (K04, hereafter, see also
the recent results by and Peñarrubia et al. 2008). K04 have
shown that the inner density profile is extremely robust and
that it is unmodified by tidal forces even after tidal stripping re-
moves a large fraction of the initial mass. They have also shown
that the degree of modification (if any) of the density profile de-
pends on the initial (i.e. before infall) concentration of the satel-
lite dark matter halo. While highly concentrated haloes (with
c∼> 15) are able to keep the profile unchanged even after several
orbital periods, less concentrated haloes (c≈ 9) slightly modify
their profile mainly by reducing the overall normalization (δc)
by approximately a factor 2 (see also Mayer et al. 2006).
In order to take into account this expected modification of the

density profile in low concentration haloes, we manually reduce
the δc parameter by a factor 2 in all haloes with concentration
less than 10 at the moment of infalling, In doing this correc-
tion we used the value of the concetration extrapolated to z=0,
in other words we multiplied the value of the concetration at
zacc by (1+ zacc) in order to take into account the redshift evolu-
tion of Rvir. Results are shown in lower panel of Figure 2. As
expected this modification mainly applies to high luminosity
haloes, since they were the most massive ones at time of infall,
and thus likely to be less concentrated (the average concentra-
tion of our haloes is 16.3± 7.1, and 74% have c > 10). When
a possible modification of the density profile for low concen-
tration haloes is taken into account the up turn in the numerical
M0.3/L relation at high luminosities almost vanishes and numer-
ical results are now in better agreement with the observational
data. There are still some haloes with M0.3 > 3× 107 around
L = 106, these haloes formed at high redshift, and thus happen,
by chance, to have a high c (i.e. they are not affected by our
correction) and a large L; besides of that they do not present
any other peculiar behavior.
The presence of a baryonic component inside the dark matter

halo can by itself modify the density profile of the halo, due to
the adiabatic compression process (e.g. Blumenthal et al. 1986).
In our case we expect this effect to be negligible given that the
baryon fraction of our haloes is much lower then the universal
one and satellites have been observed to be dark matter domi-
nated even in their central regions (S08).
Now we turn to understand the origin of the relation between

M0.3 and L found by S08. In upper panel of Figure 3 we show
the distribution of Vcirc at the time of accretion for visible satel-
lites (same sample used in Figure 2). The distribution peaks
aroundVcirc = 20 km/s and then declines sharply towards higher
values of the circular velocity. As discussed in Section 3, the
sharp cutoff below Vcirc ∼ 20 km/s comes from the shut off of
cooling in haloes with virial temperature below 104K. Combin-
ing this narrow distribution of circular velocity (between 20−40
km/s) with the theoretical expectations shown in Figure 1, and
assuming thatM0.3 does not evolve after accretion, it is not sur-
prising that all Milky Way satellites (observed and simulated)
have a inner mass within 300 pc always around 107M⊙. It is
then interesting to ask why these satellites span a wide range

Maccio,Kang &Moore, 2008

Inconsistency with observed satellite kinematics?

Moore et al 1999

Klypin et al 1999

● Inconsistency is much less dramatic when one uses the limiting circular           
   velocity inferred from the velocity dispersion profiles



The spatial distribution of MW/M31 satellites is also a 
mystery
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Figure 6. The distribution of LG galaxies as seen from the midpoint between the MW and M31. Note that in contrast to the previous
plots, this is not plotted in Galactic coordinates l and b. Instead, the orientation of the coordinate system was chosen such that the MW
and M31 lie on the equator and the normal to the plane fitted to all 15 non-satellite galaxies points to the north pole. The positions
and orientations of the MW and M31 discs are indicated by black ellipses. The Galactic disc of the MW is seen from the south, the
Galactic south pole points to the upper right of the plot. Satellite galaxies are plotted as crosses (+ for MW, × for M31), non-satellites
are plotted as filled circles. The one-sigma distance uncertainties for the galaxies result in position uncertainties in this projection, which
are indicated by the grey lines. For most galaxies they are smaller than the symbols. Galaxies within a common plane are marked with
the same color. All MW satellites are assumed to lie in the VPOSall are plotted in blue, while the M31 satellites assigned to the GPoA
are plotted in red. Most of the non-satellite galaxies in the LG lie along one of two ’bands’, one above and one below the plot’s central
axis. The only LG galaxy not along one of the bands is the Pegasus dwarf irregular (dIrr). It is, however, very close to the plane of M31
itself. We have indicated this by marking the satellites close to the M31 disc plane, but not in the GPoA, in magenta.

rection of (l, b) = (−136◦,−28◦), corresponding to (l, b) =
(224◦,−28◦) in our notation of non-negative Galactic lon-
gitude, and a plane thickness estimate of 200 kpc without
specifying how this thickness was measured. Using a second
method which assumes that the line connecting the MW and
M31 lies within the LG plane, they repeat their plane fit,
resulting in a plane normal pointing to (l, b) = (133◦,−27◦).
As this normal direction points close to the position of M31
([l, b]M31 = [121◦,−22◦]), it can not describe a plane in-
cluding both the MW and M31. We therefore have to as-
sume that the l-component of their second normal direction
lacks a minus sign, which would agree with the statement
by Pasetto & Chiosi (2007) that the difference between their
two planes is small. If this is the case, their second plane fit
would have a normal pointing to (l, b) = (227◦,−27◦) in our
notation. Thus, their results agree well with our plane fitted
to all non-satellite galaxies in the LG.

With a RMS height of almost 300 kpc, the single plane
fitted to all non-satellite galaxies is much wider than the
satellite galaxy planes around the MW and M31. Motivated
by the GPoA, which consists of only a sub-sample of M31
satellites, we look for the possibility that there are sub-
samples of non-satellite galaxies in the LG which lie in a

thinner plane. Fig. 6 shows an Aitoff projection of the distri-
bution of all LG galaxies as seen from the midpoint between
the MW and M31 (the origin of our Cartesian coordinate
system). The angular coordinate system for this plot is cho-
sen such that the normal-vector of the plane fitted to all
15 non-satellite galaxies defines the north pole, and such
that the MW and M31 lie along the equator at longitudes
of L′ = 90◦ and L′ = 270◦, respectively. All non-satellite
galaxies are plotted as filled points in Fig. 6, the MW satel-
lite positions are indicated with plus signs and those of the
M31 satellites with crosses.

Galaxies which lie within a common plane that contains
or passes close to the midpoint between the MW and M31
will lie along a common great-circle in Fig. 6. This is, for
example, the case for the M31 satellites in the GPoA (red
symbols), because the GPoA is oriented such that it is seen
edge-on from the MW and therefore also from the midpoint
between the MW and M31. Two groupings are obvious for
the non-satellites. Mostly contained in the upper half of the
plot, the LG galaxies UGC 4879, Leo A, Leo T, Phoenix,
Tucana, Cetus, WLM, IC 1613 and Andromeda XVI (plot-
ted in yellow) lie along a common ’band’ (below, this group
will be referred to as LGP1). A second, smaller grouping can

c⃝ 2012 RAS, MNRAS 000, 1–33

A&A 523, A32 (2010)

Fig. 4. Parameters of the MW DoS: the 3-D distribution of the MW
satellite galaxies. The 11 classical satellites are shown as large (yellow)
circles, the 13 new satellites are represented by the smaller (green) dots,
whereby Pisces I and II are the two southern dots. The two open squares
near the MW are Seg 1 and 2; they are not included in the fit because
they appear to be diffuse star clusters nearby the MW, but they do lie
well in the DoS. The obscuration-region of ±10◦ from the MW disc is
given by the horizontal gray areas. In the centre, the MW disc orienta-
tion is shown by a short horizontal line, on which the position of the Sun
is given as a blue dot. The near-vertical solid line shows the best fit (seen
edge-on) to the satellite distribution at the given projection, the dashed
lines define the region ±1.5 × ∆min, ∆min being the rms-height of the
thinnest DoS (∆min = 28.9 kpc in both panels). Upper panel: an edge-on
view of the DoS. Only three of the 24 satellites are outside of the dashed
lines, giving Nin = 21, Nout = 3 and thus a ratio of R = Nin/Nout = 7.0.
Note the absence of satellites in large regions of the SDSS survey volume
(upper left and right regions of the upper panel, see also Fig. 1 in Metz
et al. 2009a, for the SDSS survey regions). Lower panel: a view rotated
by 90◦, the DoS is seen face-on. Now, only 13 satellites are close to the
best-fit line, 11 are outside, resulting in R = 1.2. Note that by symmetry
the Southern Galactic hemisphere ought to contain about the same num-
ber of satellites as the Northern hemisphere. Thus, The Stromlo Milky
Way Satellite Survey is expected to find about eight additional satellites
in the Southern hemisphere.

Fig. 5. Testing for the existence of the DoS. The behaviour of R for each
view of the MW, given by the Galactic longitude of the normal vector
for each plane-fit. R = Nin/Nout is the ratio of the number of satellites
within 1.5× ∆min (∆min = 28.9 kpc), Nin, to those further away from the
best-fit line, Nout, calculated for all 24 known satellites, as well as for
the fits to the 11 classical and the 13 new satellites separately (taking
their respective rms heights as the relevant ∆min). The disc-like distri-
bution can be clearly seen as a strong peak close to lMW = 150◦. Note
that the position of the peaks are close to each other for both subsam-
ples separately. This shows that the new satellite galaxies independently
define the same DoS as the classical satellite galaxies.

The fitting to the 11 classical satellites leads to results that
are in very good agreement, too. The best-fit position for the
11 classical satellites is lMW = 157.◦6 ± 1.◦1 and bMW = −12.◦0 ±
0.◦5, the height is found to be ∆ = 18.3± 0.6 kpc, and the closest
distance to the MW centre is DP = 8.4 ± 0.6 kpc. This is in
excellent agreement with the results of Metz et al. (2007). In
that paper, the authors reported that lMW = 157.◦3, bMW = −12.◦7,
∆min = 18.5 kpc, and DP = 8.3 kpc. This illustrates that the
results are extremely accurate despite employing a more simple
disc-finding technique.

The agreement of the fit parameters for the two subsam-
ples separately is impressive. Two populations of MW satel-
lite galaxies (classical versus ultra-faint) with different discov-
ery histories and methods define the same DoS. This shows that
the new, faint satellites fall close to the known, classical, DoS
(≡DoScl). Even without considering the classical satellite galax-
ies, the new satellites define a disc, DoSnew, that has essentially
the same parameters. This confirms the existence of a common
DoS≈DoSnew ≈DoScl.

5.4. The DoS – discussion

A pronounced DoS is therefore a physical feature of the MW
system. But what is its origin? Is the existence of both the
classical-satellite DoScl and the new-satellite DoSnew, such that
DoSnew ≈ DoScl, consistent with the CCM?

It has been suggested that the highly anisotropic spatial satel-
lite distribution maps a highly prolate DM halo of the MW that
would need to have its principal axis oriented nearly perpendic-
ularly to the MW disc (Hartwick 2000). However, there is still
much uncertainty and disagreement as to the shape and orien-
tation of the MW DM halo: Fellhauer et al. (2006) used the
bifurcation of the Sagittarius stream to constrain the shape of
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Satellites are
• in thin/great plane
• co-orbiting

Inconsistent with CDM
predictions (<1%chance)

Observed Sats of MW/M31

predicted distribution of subhalos by CDM
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perhaps at as much as the factor of ∼ 2 level from halo to
halo (Zentner & Bullock 2003). Therefore the “cosmic vari-
ance error” will affect our ability to determine a characteristic
subhalo mass based on counts (but does not affect the correc-
tion itself, which depends only on the radial distribution, not
the total counts of subhalos). Recently, Diemand et al. (2008)
have published results from the Via Lactea II halo, which has
a factor of ∼ 1.7 times more subhalos at fixed vmax than
the Via Lactea halo we analyze here. If we take the veloc-
ity function in Diemand et al. (2008) Figure 3, Nsat would
correspond to vmax ! 9 km s−1 .
While the maximum circular velocity of a subhalo is a use-

ful measure of its potential well depth, it is very difficult to
measure vmax directly from dwarf satellite stellar velocities
(Strigari et al. 2007b). The best-determined dark halo observ-
able is the integrated mass within a fixed radius within the
stellar distribution (Strigari et al. 2007a). While the observed
half-light radii vary from tens to hundreds of parsecs for the
dwarf satellites, all dwarf satellites are found to have a com-
mon mass scale of ∼ 107M⊙ within a fixed radius of 300 pc
within their respective centers (Strigari et al 2008 in prep.)
and to a similar extent a common mass of 106 within 100 pc
(Strigari et al 2008). Although the masses within these scales
are difficult to resolve with the Via Lactea simulation we con-
sider in this paper, this mass scale will be well-resolved in Via
Lactea II (Diemand et al. 2008) and forthcoming simulations.
In the future, a statistical sample of highly resolved subhalos
will allow for a robust comparison between the dwarf satellite
mass function and the subhalo population. This in turn will al-
low corrections of the sort presented in this paper on various
sub populations of subhalos and galaxies, providing a much
more stringent consistency check between the mass function
and luminosity function in ΛCDM-based models. It is im-
portant to note, however, that the observed stellar kinemat-
ics of the satellites does set stringent limits on their host halo
vmax values. These limits are consistent with the results pre-
sented here in that any of the reasonable sub-populations dis-
cussed above (e.g. vmax ! 7 − 10 km s−1 ) are not excluded
by the current data (Strigari et al. 2007b, 2008). We note
that strong CDM priors suggest somewhat larger vmax values
(! 15km s−1 – Strigari et al. 2007b, 2008; Peñarrubia et al.
2008), which would (if anything) underpredict the observed
visible satellite counts, according to our estimates.
As we have shown, we expect the discovery of many

more dwarfs to occur with planned surveys like LSST, DES,
PanSTARRS, and SkyMapper. If so, it will provide important
constraints on galaxy formationmodels, which, at present, are
only poorly constrained by the present data. The ability to de-
tect galaxies as faint as L ∼ 100L⊙ provides an opportunity
to discover if there is a low-luminosity threshold in galaxy for-
mation, and to use these faint galaxies as laboratories to study
galaxy formation in the extreme. The planned surveys will
also provide an important measurement of the radial distribu-
tion of faint satellites. This will help test our predictions, but
more importantly provide constraints on more rigorous mod-
els aimed at understanding why and how low-mass galaxies
are so inefficient at converting their baryons into stars.
Another important direction to consider is searches for

similar satellites around M31. New satellites are rapidly
being discovered in deep surveys of its environs (e.g.
McConnachie et al. 2008). While there are indications of sub-
stantial differences in theM31 satellites and their distributions
compared to the Milky Way (McConnachie & Irwin 2006),
such comparisons are complicated by the fact that it is im-

FIG. 9.— Maximum radius for detection of dSphs as a function of galaxy
absolute magnitude for DR5 (assumed limiting r-band magnitude of 22.2)
compared to a single exposure of LSST (24.5), co-added full LSST lifetime
exposures (27.5), DES or one exposure from PanSTARRS (both 24), and the
SkyMapper and associated Missing Satellites Survey (22.6). The data points
are SDSS and classical satellites, as well as Local Group field galaxies.

possible to detect the ultra-faint satellites that comprise most
of our corrected satellite counts at the distance of M31. with
the much larger data samples that will be available with future
deep surveys, it may be easier to compare the true luminosity
function and distributions of Milky Way satellites to M31 and
hence better understand the histories of both the galaxies, as
well as better constrain how dSph’s form in a wider ΛCDM
context.
Finally, if LSST and other surveys do discover the (full-sky)

equivalent of∼ 400 or even∼ 1000 satellites, and appropriate
kinematic follow-up with 30m-class telescopes like the Thirty
Meter Telescope (TMT) confirms that these objects were in-
deed dark-matter dominated, then it will provide a unique
and powerful means to constrain the particle nature of dark
matter. As discussed in the introduction, the mass function
of dark matter subhalos is expected to rise steadily to small
masses as ∼ 1/M (Klypin et al. 1999; Diemand et al. 2007a)
and the only scale that is expected to break this rise is the
cutoff scale in the clustering of dark matter. When the MSP
was originally formulated, scenarios like warm dark matter
(WDM) were suggested as a means of “erasing” all but the
∼ 10 most massive subhalos per galaxy by truncating the
power at ∼ 108M⊙ scales. If ∼ 1000 satellites were dis-
covered, then the same idea could be used to provide a limit
on the small-scale clustering characteristics of the dark mat-
ter particle. As a rough approximation, N ≃ 1000 subha-
los corresponds to a minimum mass subhalo in Via Lactea
of M ≃ 107M⊙ (Diemand et al. 2007a), or an original mass
(before infall) of Mi ≃ 3 × 107M⊙ (Diemand et al. 2007b).
If we associate this z = 0 subhalo mass with a limiting free-
streaming mass, then we obtain the bound mν ! 10 keV on
the sterile neutrino (Abazajian & Koushiappas 2006). This
limit is competitive with the best constraints possible with the
Lyα forest and is not subject to the uncertainties of baryon
physics. Of course, WDM simulations will be required in or-
der to convincingly make a link between satellite counts and
the small-scale power-spectrum, but these simulations are cer-
tainly viable within the time frame of LSST.
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FIG. 10.— Expected luminosity functions for LSST per 4π sterradians.
For the single exposure, the adopted limiting magnitude is rlim = 24.5,
while for the co-added case, rlim = 27.5 The Skymapper curve assumes
a hypothetical full sky coverage survey of the same limiting magnitude as
Skymapper (rlim = 22.6).

6. CONCLUSIONS
The goal of this paper has been to provide reasonable,

cosmologically-motivated corrections to the observed lumi-
nosity function. Our primary aim is to motivate future
searches for faint dwarf galaxies and to explore the status
of the missing satellites problem in light of the most recent
discoveries. By combing completeness limits for the SDSS
(Koposov et al. 2007) with the spatial distribution of subhalos
in Via Lactea, we have shown that there are likely between
∼ 300 and ∼ 600 satellites brighter than Boo II within the
Milky Way virial radius (Figure 6), and that the total count
may be as large as ∼ 2000, depending on assumptions (Table
3, Figure 8). We also showed that the observed satellites are
indeed consistent with tracing the radial distribution of subha-
los, provided completeness limits are taken into account (Fig-
ure 5 and Table 2). Moreover, we argued that future large
sky surveys like LSST, DES, PanSTARRS, and SkyMapper
should be able to see these satellites if they do exist, and
thereby provide unprecedented constraints on the nature of
galaxy formation in tiny halos.
While this correction predicts that nearly all of the unde-

tected satellite are faint (MV > −7) and consequently have
low surface brightness, it is important to note that it is not
clear how this maps onto satellites’ vmax. While a possible
test of this correction’s result lies in selecting sub-samples of
the observed satellite population, vmax is difficult to constrain
in the known satellites (Strigari et al. 2007b), and hence this
exercise is suspect until simulations can resolve subhalos well
enough to compare to observables such as the integrated mass
within 300 pc (see §5.2).
There are two major points to take away from this correc-

tion:

• As it was first formulated, the MSP referred to the mis-
match between the then ∼ 10 known dwarf satellite

galaxies of the Milky Way and Andromeda, and the ex-
pected count of ∼ 100− 500 subhalos with vmax ≥ 10
km s−1 (Klypin et al. 1999; Moore et al. 1999). Our
results suggest that the recent discoveries of ultra-faint
dwarfs about the Milky Way are consistent with a to-
tal population of ∼ 500 satellites, once we take into
account the completeness limits of the SDSS. In this
sense, the primary worries associated with the MSP
in CDM are alleviated. Nonetheless, it is critical that
searches for these faint galaxies be undertaken, as the
assumptions of this correction must be tested.

• The shape of the faint end of the satellite luminosity
function is not yet constrained well enough to deeply
understand the theoretical implications. There exists
yet a large parameter space in galaxy formation theory
that will fall inside the error bars of Figure 6, and an
even larger parameter space of models that are viable
if our caveats and scenario possibilities are considered.
Our results strongly suggest that the luminosity func-
tion continues to rise to the faint end, with a faint end
slope in our fiducial scenario given by dN/dMV =
10(0.35±0.08)MV +3.42±0.35, or dN/dLV ∝ Lα, with
α = −1.9 ± 0.2. This is substantially steeper than the
result of Koposov et al. (2007), possibly the result of
using a ΛCDM-motivated subhalo distribution instead
of the analytic profiles used in that paper. But caution
is advised in reading anything into the details of the
shape, as nearly anything could be hiding within the
faintest few bins when all the scenarios are considered.
This is apparent from Figure 10, where the Skymapper
line appears as a power law over the range shown, while
the actual luminosity function is certainly not. Further-
more, depending on which scenario is used, the slope
(α) can vary anywhere from -1.16 to -2.15 (see last col-
umn of Table 3).

Fortunately, future deep large sky surveys will detect very
faint satellites out to much larger distances and hence firmly
observe the complete luminosity function out beyond the
Milky Way virial radius (see Section 4). With these data, it
will be possible to provide stringent limits both on cosmology
and galaxy formation scenarios (see Section 5.2). Nonethe-
less, the current data are not deep enough, and until the new
survey data are available, there will be no way to put the spec-
tre of the MSP completely to rest.
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FIG. 4. Portraits of the simulated Milky Way halo at z = 0 in the set B high resolution simulations. Structure within 500 kpc
of the MW centers is shown.

the low end of their distribution. This is likely due to the
different cosmology used in the Ishiyama et al. simulation
(discussed below).

Figure 7 also plots the cumulative velocity functions
but includes all subhalos within R50 and the subhalo ve-
locities have been normalized by the circular velocity at
R50 of their host MW. The Ishiyama et al. halos are
again plotted as in Figure 6 as well as Via Lactea II.
The solid straight line is the result from the Aquarius
simulations [77]. Again there is good agreement between
our simulations and Via Lactea II but an offset between
our simulations and those of Ishiyama et al. and Aquar-
ius. To first order, the abundance of halos of any size
depends on the power spectrum of density perturbations
which depends on the normalization, σ8, and the tilt of
the power spectrum, ns. Larger values of either param-
eter increases the power on small scales and leads to a
larger number of satellies for a given mass and vmax of
the host. The values (σ8 = 0.9, ns = 1) were used in the
Aquarius simulations and (0.8, 1) were used by Ishiyama

et al. Both are significantly greater than our adopted
values of (0.74, 0.951), and this is the likely cause of the
abundance offset.

We adopted a WMAP3 cosmology to facilitate com-
parison to the Via Lactea II simulation. The WMAP3
values of ns, σ8, and Ωm are 1.0, 2.9, and 2.5 standard
deviations below the latest WMAP7 values [80]. The
Bolshoi simulation used parameters in agreement with
WMAP7 and constraints from other cosmology projects.
A comparison of the subhalo abundances of 4960 Bolshoi
halos with circular velocities and masses comparable to
the Via Lactea II halo indicated Bolshoi has more sub-
halos by about 10%. Although Via Lactea II is just one
halo and may not be representative of the average for a
WMAP3 cosmology, this agrees with expectations from
the 10% smaller value of σ8 used by Via Lactea II. We
used the same value of σ8 as Via Lactea II but the Bolshoi
fitting formula applied to our high resolution simulations
in Figure 6 provides an excellent fit with no indication
of an offset. This could be because, as we show in the
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Figure 5. Circular velocity curves for the 12 CDM (left) and
WDM (right) subhaloes that had the most massive progenitors.
The 3 red curves represent subhaloes with the most massive pro-
genitors, which could correspond to those currently hosting coun-
terparts of the LMC, SMC and the Sagittarius dwarf. The 9 black
curves might more fairly be compared with the data for the 9
bright dwarf spheroidal galaxies of the Milky Way considered by
Wolf et al. (2010). Deprojected half-light radii and their corre-
sponding half-light masses, as determined by Wolf et al. (2010)
from line-of-sight velocity measurements, are used to derive the
half-light circular velocities of each dwarf spheroidal. These veloc-
ities and radii are shown as coloured points. The legend indicates
the colour coding of the different galaxies.

ies, while the CDM subhaloes are almost all too massive at
the corresponding radii. The CDM subhaloes have central
masses that are typically 2-3 times larger than the Milky
Way satellites. There is one CDM subhalo that lies at lower
masses than all 9 dwarf spheroidals, but this had one of the
three most massive progenitors and has been almost com-
pletely destroyed by tidal forces.

Fig. 4 and 5 show that the WDM subhaloes are less
centrally concentrated than those in the corresponding CDM
halo. Concentrations typically reflect the epoch at which the
halo formed (Navarro et al. 1996b, 1997; Eke et al. 2001).
To investigate systematic differences in the formation epoch
of the WDM and CDM subhaloes in our sample, we must
choose a suitable definition of formation time. Since we are
considering only the central mass, and we do not wish to
introduce scatter in any correlation by using subhaloes that
may have been stripped, we define the formation time as
the first time at which the total progenitor mass exceeds the
mass within 1 kpc at infall. The correlation of this redshift
with the mass within 1 kpc at infall is shown in Fig. 6 for the
12 most massive WDM and CDM progenitors that survive to
z = 0 as distinct subhaloes. Evidently, the proto subhaloes
that form later, which are generally WDM not CDM ones,
have the lowest central masses. The mean difference between
the top 12 WDM and CDM proto-subhalo masses within 1
kpc is approximately a factor 2.

Because of their later formation time, the infalling
WDM subhaloes already have lower central masses than
those falling into the corresponding CDM haloes. As their
mass is less centrally concentrated, the WDM subhaloes are
more susceptible to stripping. While this is most impor-
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Figure 6. The correlation between subhalo central mass at infall
and the redshift of formation, zform, defined as the redshift at
which the total mass of each proto subhalo first exceeded this
value. Central mass is defined within 1 kpc, and CDM and WDM
results are shown with blue and red symbols respectively.

tant in the outer regions of the subhaloes, the mass profiles
in Fig. 5 show that the inner regions of some of the sub-
haloes have also endured significant depletion since infall.
Fig. 7 shows, for both WDM and CDM subhaloes, the ra-
tio, Mz=0(< r)/Minfall, of the present day mass contained
within r = 0.5, 1 and 2 kpc to the mass at infall, as a
function of the central mass at infall at the chosen radius.
On average, the median mass at infall for WDM is lower
by ∼ 0.15 dex than the corresponding mass for CDM. One
subhalo gains mass between infall and z = 0 because it ac-
cretes another subhalo. While there is a large scatter among
the different subhaloes, with some having lost the majority
of their central mass since infall, no significant systematic
difference between WDM and CDM subhaloes is apparent.
This implies that the reason why the WDM subhaloes pro-
vide a better fit to the half-light masses of the 9 Milky Way
dwarf spheroidals studied by Wolf et al. (2010) is not excess
stripping but the later formation time, and correspondingly
typical lower concentration, of the WDM proto subhaloes
compared to their CDM counterparts.

4 DISCUSSION AND CONCLUSIONS

The properties of the satellite galaxies of the Milky Way
have posed a longstanding puzzle for CDM theories of galaxy
formation. Two aspects of this puzzle have reportedly been
separately and independently solved. One is the luminos-
ity function of the satellites. The basic idea - the suppres-
sion of galaxy formation in small haloes by a combination
of feedback effects produced by the reionization of gas at
high redshift and supernova heating - was suggested by
Kauffmann, White, & Guiderdoni (1993) and explored thor-
oughly in the early 2000s (Bullock et al. 2000; Benson et al.
2002; Somerville 2002) and has been revisited many times
since then (see Font et al. 2011, and references therein for
the most recent discussion). The other aspect concerns the
dynamical state of the satellites. Strigari et al. (2010) have
shown that there exist subhaloes in the Aquarius CDM sim-

c⃝ 2011 RAS, MNRAS 000, ??–8

mwdm=2kev
Lovell etal. 2012

Figure 1: �2(k) � 4⇥(k/2⇥)3P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the
canonical cold DM model with an Eisenstein & Hu (1997) [11] transfer function. The dashed line is a thermal relic warm
DM model with mWDM = 8 keV [12]. The dotted line is an atomic DM model [13]. We used WMAP7 cosmological
parameters [14], ⇤m = 0.265, ⇤⇥ = 0.735, ⇤b = 0.0449, h = 0.71, ⇤8 = 0.801, and ns = 0.963.

2. Dark Matter Simulations and the Dark Universe

The numerical simulation discussed in this review together span an enormous range of length
scales, more than 8 orders of magnitude reaching from near horizon scale (⇥ 20 Gpc) down to
sub-Galactic (tens of pc). Individually they focus on di⌅erent regimes (see §3 and Table 2), but
all have in common that they evolve the growth of DM density fluctuations all the way to the
present epoch at redshift zero.1

The shape of the CDM power spectrum results in a hierarchical, bottom-up process of struc-
ture formation, in which small and low mass objects collapse first and over time merge to form
ever more massive structures, until the onset at z ⇤ 1 of DE induced accelerated expansion begins
to halt further collapse. In Fig. 1 we show a plot of the linear dimensionless matter power spec-
trum �2(k) � 4⇥(k/2⇥)3P(k) at z = 0 versus the wavenumber k of the fluctuation. Where � � 1,
gravitational collapse will have proceeded to the non-linear regime and typical objects of the cor-
responding mass will have collapsed. Cosmic scales, including the Baryon Acoustic Oscillation
feature discussed in §2.3.i, remain in the linear or mildly non-linear regime, while cluster and
galactic scales are strongly non-linear. Note that computational demands grow strongly with the
degree of non-linearity resolved in the simulation.

Observational constraints from the Cosmic Microwave Background, cluster abundances, galaxy
clustering, weak lensing and the Lyman-� forest have constrained the power spectrum of density

1We deliberately omit from our discussion multi-billion particle simulations that focus only on the first billion years
of cosmic evolution, for studying the epoch of reionization [15] or early supermassive black hole growth [16].
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CDM

Fig. 2.— The galaxy stellar mass functions. lines are from our model with fc = 0.15 (see text). The z = 0 data points are from Li &
White (2009) and Bell et al. (2003), and high-z data points are from Marchesini et al. (2009), Fontana et al. (2006).

in their SAM (that could partially be the explanation of
the failure of the CDM scenario in their model at both
high and low luminosities, at z = 0 and z = 1.5).
In the same paper Menci and collaborators also found

an effect of WDM on the high luminosity tail of the lumi-
nosity function. Our results do not show such an effect
– all our models give the exact same prediction at high
stellar masses. This result is somehow expected given the
similarity of the halo mass function at high masses (see
Fig. 1). Menci et al. claimed that this difference was
due to the different accretion rates of satellites in mas-
sive haloes. SAMs have been show to have problems in
modelling the properties of satellites in high mass haloes
(e.g., Weinmann et al. 2010, Liu et al. 2010 and refer-

ences therein). This again raises the question whether
the effect seen by Menci and collaborators (but not in
this work) is a true effect due to warm dark matter, or
simply reflects the specific way in which baryonic physics
is implemented in their semi analytical model. We will
address this issue of degeneracy between SAM parame-
ters and DM properties in the next section.

3.1. Degeneracy between SAM parameters and WDM

The failure of WDM models in matching the redshift
zero stellar mass function does not imply that WDM
models are somehow “wrong”; the reason for this resides
in the large uncertainty of baryonic physics parameteri-
zation in the SAMs. Obviously the same argument ap-

Fewer galaxy at M=10^10 
solar mass

Kang et al. 2012 MNRAS
Kang et al. 2013, ApJ
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Fig. 4.— The stellar mass to halo mass relation. The data
points are observational results using different approaches to de-
termine the halo mass: Galaxy-galaxy weak lensing from Mandel-
baum et al. 2006 (filled circles); Satellite kinematics from Conroy
et al. 2007 (open squares) and More et al. 2009 (open triangles).
The lines are the predictions from the SAMs (CDM – solid black;
WDM 0.75 KeV – red long-dashed; WDM 0.5 KeV – blue short-
dashed). The dotted line shows the maximum stellar mass in given
halo mass assuming an universal baryonic fraction.

fects in SAMs.

3.2. Constraining WDM with the stellar-to-halo mass
ratio

In Fig. 3 we have shown that better match to the local
stellar mass function can be achieved in the WDM mod-
els by increasing the fc parameter in low-mass haloes. Of
course this has the consequence of increasing the stellar
mass content in low mass haloes.
This increased ratio between stellar and halo mass can

be constrained using several independent observations.
The halo mass can be directly measured for stacks of
galaxies using galaxy-galaxy weak lensing (e.g., Mandel-
baum et al. 2006; Leauthaud et al. 2012a,b) or satellite
kinematics (e.g., Conroy et al. 2007; More et al. 2011),
and inferred assuming halo abundance matching (Moster
et al. 2010). A closely related quantity to the halo mass
is the maximum circular velocity of the dark matter halo.
The best observational probe of this is the rotation ve-
locity in the “flat” part of the rotation curve, Vflat, as
traced by 21cm observations of neutral hydrogen. We
refer to the relation between stellar mass and outer ro-
tation velocity as the Tully-Fisher relation, even though
the original relation from Tully & Fisher (1977) was be-
tween B-band luminosity and 21cm linewidth.
In Fig. 4 we show the halo mass to stellar mass rela-

tion at z = 0 for our WDM models (with different fc)
and the CDM model. Data points with error-bars are
measured stellar to halo mass ratio from weak lensing
and satellite kinematics (see Leauthaud et al. 2012a for
a discussion of the different data sets.). The dotted line
shows the maximum stellar mass in given halo mass as-
suming the universal baryon fraction, fb = Ωb/Ωm from
the WMAP7 cosmology.

While the three models give the same stellar mass
function (as shown in Fig. 3), they do predict differ-
ent halo-to-stellar mass ratios especially for halo masses
below 1012M⊙. For a give halo mass the WDM models
predict a large stellar mass with this difference increas-
ing for decreasing mν values. Unfortunately, the current
weak lensing and satellite kinematics observations do not
probe halo masses below 1012M⊙.

3.3. Constraining WDM with the Tully-Fisher relation

For haloes with masses in the range 1011 <
M200/M⊙ < 1012, the best current probe of the halo
masses comes from the Tully-Fisher relation. This con-
straint is shown in Fig. 5. As before the observations
are shown with points and error bars, while the models
are shown with lines. For the observations the points
show mean of logMstar in bins of outer rotation veloc-
ity, with the error bar corresponding to the error on the
mean. There are typically ∼ 10 galaxies per velocity
bin. The observations are from the compilations of Stark
et al. (2009) and McGaugh (2012). We calculate stellar
masses using relations from Bell et al. (2003) (with a
−0.1 dex correction to convert to a Chabrier 2003 IMF).
We also convert the Hubble parameter from 75 to 70.
For the models we compute the circular velocity at a

radius enclosing 80% of the cold gas, R80. At this radius
model rotation curves tend to be flat (Dutton 2009). The
SAM does not provide radial information for the stars,
gas, or dark matter, so we use empirical constraints (from
Dutton et al. 2011) for the stars and theoretical con-
straints (Maccio et al. 2008; Schneider et al. 2012) for
the dark matter. We assume the stars and cold gas are
in exponential disks, with the scale length of the cold
gas being 1.55 times larger than that of the stellar disk
(Dutton et al. 2011). We determine the average disk size
using the size vs stellar mass relation for late-type galax-
ies from Dutton et al. (2011). Thus for a given stellar
mass in the model, we know the average radius we should
be measuring the rotation velocity, and the contribution
of the stars and cold gas to this velocity. For the dark
matter and hot gas we assume the profiles are NFW. For
the CDM case we adopt the concentration mass rela-
tion from Macciò et al. (2008) for a WMAP5 cosmology
(which is very similar to that of the cosmology adopted
here). For the WDM models we scale the concentration
parameters according to the fitting formula of Schneider
et al. (2012). We also consider two possiblities for the
halo response to the baryonic mass, either by contrac-
tion (Gnedin et al. 2004) or expansion (Dutton et al.
2011). Their effects are shown as the shaded region in
Fig. 5.
Fig. 5 shows that the CDM model reproduces the data

well, whereas at a fixed velocity the WDM models have
higher stellar masses, especially at low velocities. At a
velocity of Vflat ∼ 80kms−1 the differences are substan-
tial: a factor of ≈ 2 between CDM and 0.75 keV WDM,
and a factor of ≈ 1.6 between 0.5 and 0.75 keV WDM.
These large differences are due to two effects. Firstly, as
shown in Fig. 4 at fixed halo mass WDM models have
higher stellar masses. Secondly, WDMmodels have lower
concentration haloes, which results in lower rotation ve-
locities, and hence higher stellar mass at fixed velocity.
We found that the second effect is the dominant one,
as in the first case simply increasing the stellar will also
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Fig. 5.— The Tully-Fisher relation. The lines show the same
models as in Figs. 3&4. For the models we calculate Vflat at a
radius enclosing 80% of the cold gas. The filled circles with error
bars show the mean (and error on the mean) of logMstar in bins
of Vflat using observations from Stark et al. (2009) and McGaugh
(2012). The shaded region shows the effect of halo contraction and
expansion. The CDM model is clearly favored over both WDM
models.

increase the circular velocity.
In summary the CDM model provides a good match

to the data (note that the model was not tuned to
match the TF relation), whereas both both WDM mod-
els overpredict the stellar masses at fixed velocity. The
limit of mν > 0.75 keV that we find here is consistent
with current limits from large scale structure (e.g. Viel
et al. 2008).

4. CONCLUSIONS

Recent observational results have challenged the other-
wise successful Cold Dark Matter model on small scales.
For example the inner density profile of dark matter halo
is too concentrated to match the kinematics of satellites
around the Milky Way (e.g. Boylan-Kolchin et al. 2011).
Warm Dark Matter models have been suggested as a pos-
sible solution since the suppression of power on small
scales can in principle alleviate if not solve these issues
(e.g. Lovell et al. 2012).
However, Most of the CDM predictions are based on

gravitational only (N-body) simulations, which by con-
struction neglect the effects of baryons and their compli-
cated network and interactions through gas cooling, star
formation and feedback that could possibly alter the re-
sults of pure DM simulations (e.g. Governato et al. 2012,
Brooks et al. 2012) It is then important to investigate the
prediction of CDM and WDM on the statistical proper-
ties of galaxy population, moving beyond a simple DM
simulation.
In this paper, we performed high-resolution N-body

cosmological simulations for three WDM models with

mν = 0.5, 0.7 and 2.0 keV respectively, plus a controlled
CDM model. We couple these simulations with a Semi
Analytical Model of galaxy formation to study the im-
pact of a cut-off in the power spectrum on observable
quantities such as the stellar mass function.
For a fixed set of parameters describing the baryonic

physics, models with low masses for the warm particle
(mν = 0.5 and 0.75 keV), predict less galaxies with stellar
mass Mstar < 1010M⊙ than the current data at z =
0. We find that the WDM model with mν = 2 keV
provides almost identical results as CDM and it is able to
successfully reproduce the data. The situation is reversed
at higher redshift z = 1.5, with WDM models in better
agreement with the observed stellar mass function than
the CDM model (or the WDM model with mν = 2 keV).
However we show these differences in the stellar mass

function, are strongly degenerate with the set of param-
eters used in the Semi Analytical Models to describe the
(largely unknown) galaxy formation processes. By ad-
justing a single parameter (the cooling rate of low mass
haloes) we have been able to get indistinguishable results
from all the DM models, both at high and low redshift.
This shows that a single observable (e.g. the stellar mass
function) can not constrain the effects of warm compo-
nent on the galaxy formation process.
In order to break this degeneracy we use independent

constraints on the (integrated) star formation efficiency
at low masses. We found that if the WDM models are
tuned to reproduce the present (z = 0) stellar mass func-
tion, the stellar mass for a given halo mass is system-
atically larger in haloes of masses below (∼ 1012M⊙).
Such scales are not reliably probed by direct methods
such as satellite kinematics or weak galaxy-galaxy lens-
ing. In order to probe such low halo masses we use the
relation between stellar mass and rotation velocity at
large galactic radii, more commonly known as the Tully-
Fisher relation. Current data already rule out models
with mν < 0.75 keV which is in agreement with other
limits from large scale structure (e.g. Viel et al. 2008).
Finally our study shows that by combining measure-

ments of galaxy stellar mass function and stellar mass
- halo mass relation down to low galaxy masses (≈
70km/s) it is possible to obtain very tight constraints
on the mass of a possible warm component. This opens
a new window in the search for the nature of the elusive
dark matter component of our Universe.
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Figure 3. Satellite galaxy luminosity functions predicted by our fiducial
semi-analytic model in galactic halos of different mass, for WDM particle
masses, mWDM, of 2 keV, 3 keV and 20 keV, as indicated in the legend.
The different coloured curves correspond to different host halo mass. The
solid line in each case is the median cumulative V-band satellite luminosity
function and the edges of each band indicate the 10th and 90th percentiles.
For reference, the luminosity function of the 11 observed classical satel-
lites, plus the DR5 satellites (scaled for sky coverage assuming an isotropic
distribution) is indicated by the black dots.

MV = −2 that we would expect around the Milky Way, it is nec-
essary to make some assumptions about the underlying distribu-
tion since it is not fully sampled. Firstly, we make the assumption
that all the ‘classical’ satellites (those with apparent magnitudes
brighter thanMV ≈ −8.5) have been observed. This is probable,
although our results would not change significantly even if one or
two remained undetected behind the Milky Way disk.

Next, we assume that the underlying distribution of satellites is
isotropic, so that the DR5 represents a geometrically unbiased sam-
pling. This may be unrealistic because the eleven classical satellites
of the Milky Way are known to lie in a ‘pancake’ structure oriented
approximately perpendicular to the plane of the Milky Way disk
(Lynden-Bell 1976, 1982; Majewski 1994; Libeskind et al. 2005).
A large region of the DR5 footprint intersects this plane; if as yet
undetected satellites also tend to lie in this disk, then the DR5
would provide a biased sampling of the true satellite population,
leading us to overpredict the number of satellites that are neces-
sary to match the data. This would have the effect of weakening
our lower limit onmWDM. However, cosmological N-body simula-
tions show that the preferentially flattened satellite distributions are
restricted to the brightest satellites, and that as fainter and fainter
populations are considered, their distribution tends to become in-
creasingly isotropic (Wang et al. 2013).

Finally, we make the extremely conservative assumption that
every satellite in the DR5 footprint area has been detected, so that
no more faint satellites are lurking below the detection threshold.
Given the survey’s radial completeness limits, this is unrealistic.
This assumption works in the sense of making our inferred lower
limits onmWDM conservative. If future or current surveys, such as
Pan-STARRS, were to reveal even more faint satellites, our lower
mass limits would become correspondingly stronger.

To quantify whether the model satellite population is compat-
ible with the MW data, we require that the model should produce
at least as many satellites withMV < −2 as are known to exist in
the Milky Way. To find the likelihood of each model given the data,
we calculate the probability that the predicted satellite population
includes at least as many members falling within a region the size
of the DR5 footprint, i.e. covering a fraction of the sky, f = 0.194,
as the DR5 survey itself, which contains nDR5 satellites2.

First, we define the number of classical Milky Way satellites
(again within the virial radius of the model halo) to be nclass. This
number is subtracted from the total number of predicted satellites,
ngalform, to prevent double-counting in the DR5 region,

npred = ngalform − nclass (6)

Then, for this remaining population of npred satellites, wemust find
the likelihood that they are distributed such that at least as many
satellites as are observed in DR5 fall in a region covering a fraction
f of the total sky area. We find the probability, P , that a number
between nDR5 and npred satellites lie in this region by assuming
that a given satellite is equally likely to be found anywhere on the
sky. Hence, P can be calculated from a binomial distribution,

P =

k=npred
∑

k=nDR5

( npred!
k!(npred − k)!

)

· fk · (1− f)npred−k (7)

Eqn. 7 gives the probability that any given realization of a halo

2 The value of nDR5 used will depend upon the virial radius of the halo
we compare to.
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Figure 1. Linear power spectra (in arbitrary units) for warm and cold dark
matter models. The thick black line shows CDM and the coloured lines var-
ious WDM models, labelled by their thermal relic mass and corresponding
value of the damping scale, α, in the legend.

2 METHODS

2.1 The warm dark matter linear power spectrum

In the case where the warm dark matter consists of thermal relics,
the suppression of small-scale power in the linear power spectrum,
PWDM, can be conveniently parametrized by reference to the CDM
power spectrum, PCDM. The WDM transfer function is then given
by,

T (k) =
[PWDM

PCDM

]1/2
= [1 + (αk)2ν ]−5/ν (1)

(Bode et al. 2001). Here, k is the wavenumber and following
Viel et al. (2005) we take the constant ν = 1.12; the parameter
α can be related to the mass of the particle,mWDM by

α = 0.049
(ΩWDM

0.25

)0.11( h
0.7

)1.22( keV
mWDM

)1.11
h−1Mpc

(2)

(Viel et al. 2005), in terms of the matter density parameter,ΩWDM,
and Hubble parameter, h = H0 / (100 km s−1 Mpc−1).

In the case where the WDM particle is a non-resonantly pro-
duced sterile neutrino, its massmsterile, can be related to the mass
of the equivalent thermal relic,mWDM, by requiring that the shape
of the transfer function, T (k), be similar in the two cases. Viel et al.
(2005) give

msterile = 4.43
(mWDM

keV

)4/3(0.25(0.7)2

ΩWDMh2

)1/3
keV. (3)

This conversion depends on the specific particle production mech-
anism (for a review see Kusenko 2009); in the rest of this paper we
will refer only to the thermal relic mass,mWDM, unless stated oth-
erwise. We consider particles with masses, mWDM, ranging from
0.5 keV to 20 keV. Fig. 1 shows the linear power spectra for six of
the 11 WDM models we have investigated, as well as for CDM.

We adopt values for the cosmological parameters that are con-
sistent with the WMAP7 results (Komatsu et al. 2011): Ωm =
0.272, Ωb = 0.0455, ΩΛ = 0.728, h = 0.704, σ8 = 0.81,

n = 0.96. Two hundred merger trees were generated for each main
halo mass and for each WDM particle mass.

2.2 Galaxy formation models

We calculate the properties of the galaxy population in our
WDM models using the Durham semi-analytic galaxy forma-
tion model, GALFORM (e.g. Cole et al. 2000; Benson et al. 2003;
Bower et al. 2006). Rather than applying it to merger trees ob-
tained from an N-body simulation, we instead construct Monte
Carlo merger trees using the Extended Press-Schechter (EPS) for-
malism (Press & Schechter 1974; Bond et al. 1991; Bower 1991;
Lacey & Cole 1993; Parkinson et al. 2008) to generate conditional
mass functions for halos of a given mass. The standard formulation
of the EPS formalism (in which the density field is filtered with a
top hat in real space) is not applicable in the presence of a cutoff
in the power spectrum. Instead, using a sharp filter in k-space pro-
duces a halo mass function in good agreement with the results of
N-body simulations. We adopt this prescription which is justified
and described in detail in Benson et al. (2013). A similar procedure
was adopted by Schneider et al. (2013) but other authors, such as
Smith & Markovic (2011) and Menci et al. (2012), have used a top
hat filter in real space and then multiplied the resulting mass func-
tion by an ad hoc suppression factor. We do not apply the correc-
tion for finite phase-space density derived by Benson et al. (2013)
because the effect of thermal velocities is negligible in the models
we consider (Macciò et al. 2012; Shao et al. 2013). Halo concen-
trations were set according to the NFW prescription (Navarro et al.
1996, 1997), as described in Cole et al. (2000), thus explicitly tak-
ing into account the later formation epoch ofWDMhalos compared
to CDM halos of the same mass. These concentrations are broadly
in agreement with the WDM simulations of Schneider et al. (2012).

We use the latest version of GALFORM (Lacey et al. 2013, in
prep.) which includes several improvements to the model described
by Bower et al. (2006). The standard GALFORM model is tuned to
fit a set of observed properties of the local galaxy population as-
suming CDM. Thus, an adjustment is required in the WDM case.
On scales larger than dwarf galaxies at z = 0 there is little differ-
ence between WDM and CDMmodels. On smaller scales, the most
important processes that influence galaxy formation are the feed-
back effects produced by the early reionization of the intergalactic
medium and supernova feedback.

In GALFORM, reionization is modelled by assuming that no
gas is able to cool in galaxies of circular velocity less than vcut at
redshifts less than zcut. For CDM, the values vcut = 30 km s−1

and zcut = 10 result in a good approximation to more advanced
treatments of reionization (Okamoto et al. 2008; Font et al. 2011).
Supernovae feedback, on the other hand, is controlled by the pa-
rameter β, the ratio of the rate at which gas is ejected from the
galaxy to the star formation rate. This ratio is assumed to depend
on the circular velocity of the disc, vcirc, as:

β =
(vcirc
vhot

)−αhot

, (4)

where vhot and αhot are adjustable parameters fixed primarily by
the requirement that the model should match the local bJ - and K-
band galaxy luminosity functions. In the Lacey et al. model, these
parameters take on the values vhot = 300 km s−1 and αhot = 3.2.
Since vcirc depends on the concentration of the host halo, which
is lower for a WDM halo than for a CDM halo of the same mass
(Lovell et al. 2012), we expect that a small adjustment to the pa-
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Figure 4. Left: exclusion diagram for thermal WDM particle masses,mWDM, as a function of the Milky Way dark matter halo mass,Mh; the shaded region
is excluded. The lower limits reported by other authors, as well as the host halo masses they considered, are indicated by the arrows. Right: sensitivity of our
constraints to variations in the parameters of our galaxy formation model; the lines show the envelope of the exclusion region.

5 DISCUSSION AND CONCLUSIONS

The cutoff in the linear power spectrum of density fluctuations pro-
duced by the free streaming of warm dark matter particles in the
early universe provides, in principle, the means to search for evi-
dence of these particles. If the particle mass is in the keV range,
the cutoff occurs on the scale of dwarf galaxies and no primordial
fluctuations are present on smaller scales. Thus, establishing how
smooth the universe is on these scales could reveal the existence
of WDM or, since the cutoff length scales inversely with the parti-
cle mass, set limits on its mass. The traditional method for testing
the smoothness of the density field at early times is to measure the
flux power spectrum of the Lyman-α forest in the spectra of high
redshift quasars. The most recent lower limit on the WDM particle
mass using this method on data at redshifts z ∼ 2−6 is that set by
Viel et al. (2013),mWDM ! 3.3 keV (2σ), for thermally produced
warm dark matter particles.

A different way to estimate the clumpiness of the matter den-
sity field on small scales, this time at the present day, is to count the
number of substructures embedded in galactic halos. The most di-
rect way to do this is to count the satellites that survive in such
halos but these are so faint that sufficient numbers can only be
found in our own Milky Way galaxy and M31. Counting the Milky
Way satellites thus provides a test of WDM which is independent
from and complementary to the Lyman-α forest constraint. There
are several complications that need to be taken into account when
carrying out this test. Firstly, a suitable property to characterize the
satellite population needs to be identified. The maximum of the
circular velocity curve, vmax, is often used for this purpose, but
this quantity is not directly measurable for the Milky Way’s satel-
lites. The luminosities of satellites, on the other hand, are accurately
measured, but using this as a test of WDM requires the ability to
predict the satellite luminosities and this, in turn, requires mod-
elling galaxy formation. This is the approach we have adopted in
this paper where we have made use of the semi-analytic model,
GALFORM. This model has the virtue that it gives a good match to

the field galaxy luminosity function in various bands and has been
extensively tested against a variety of other observational data. The
vmax test was carried out by Polisensky & Ricotti (2011) and by
Lovell et al. (2013) but the uncertainty in the satellites’ values of
vmax introduces some uncertainty in the limits set.

The second complication is the requirement to understand the
completeness of the satellite sample. The Milky Way has a popu-
lation of 11 bright or “classical” satellites which is thought to be
complete (although one or two bright satellites could be lurking
behind the Galactic Plane, too small a number to affect our con-
clusions) and a population of faint and ultrafaint satellites that have
been discovered in the fifth of the sky surveyed by the SDSS.While
the classical satellites are known to be distributed on the thin plane,
identified by Lynden-Bell (1976), it is not known if the SDSS sam-
ple is also anisotropic. Large N-body CDM simulations suggest
that it is only the brightest satellites that lie on a plane whereas
more abundant populations tend to be much less anisotropically
distributed (Wang et al. 2013). Here we assume that the spatial dis-
tribution of the Milky Way satellites other than the classical ones is
isotropic. If this assumption were incorrect, we would overestimate
the number of satellites which would cause us to overestimate the
minimum WDM particle mass required to have enough satellites
in a halo of a given mass. The simulations of Wang et al. (2013)
suggest that this effect is unlikely to be large.

The third complication of our method is the difficulty in as-
sessing possible systematic effects arising from uncertainties in our
galaxy formation model. As we discussed in Section 4.2, the main
source of uncertainty is our treatment of the inhibiting effect of the
early reionization of the intergalactic medium on the cooling of gas
in small halos. We model this process in a relatively simple way
which, however, has been validated both by realistic semi-analytic
calculations (Benson et al. 2002) and by full cosmological hydro-
dynamic simulations (Okamoto et al. 2008). Another uncertainty
arises from the fate of satellites prior to merging with the central
galaxy: we do not currently consider tidal disruption effects in our
model, meaning that all satellites survive until the point of merg-
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Summary
• The standard LCDM model (cosmological constant + cold dark matter) works 

well on large scales.

• On small scales, LCDM still works better (Warm dark matter VS baryonic 
effect)

• semi-analytical model and hydro-dynamical simulation are both useful to 
model galaxy formation in cosmological context, SAM is more fast to explore 
physical process

• The number of low-mass galaxies at high-z is crucial to understand the physics 
of galaxy formation: gas cooling, feedback, tidal disruption

• Our Milky Way may be an anomaly (outlier statistically, depending on future 
survey of satellites distribution: number counts, spatial distribution, kinematics 
etc)



Thanks for your attention !


