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Bi-Modal Distribution of Galaxies Q) ¥RAzLLx
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Abundant Cold Gas
Young Stellar Populations
Disk-Like Morphology
Blue color

Galaxies located in the joint region are
called “green valley (GV) ” galaxies.

Early Type:

E/S0 Morphology;
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Red Colors
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U - V (restframe)

Rest-frame U — V color vs. stellar mass in six redshift bins
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A clearly defined red sequence is seen up to z =3
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Star-Forming Main Sequence (SFMS)

The intensity of
current star
formation (SFR)
scales with its

product (M*) over

the cosmic time:

SFR o« M

THE STAR-FORMING MAIN SEQUENCE AND OUTLIERS
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e.g., Brinchmann et al. 2004; Elbaz et al. 2007; Noeske et al. 2007.



SF Main Sequence
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Evolution of the Star-Forming
""Main Sequence"

The Star-forming Main Sequence - Bimodality

: two populations of galaxies (SFGs and
QGs) on the basis of their specific star
formation rates (sSSFR = SFR/M*¥)

Renzini & Peng (2015)

5

log SFR (M_solar/yr)

9.8 10.0 10.2 104 106 10.8 11.0

Speagle et al. (2014) log Mass (M_slar)



What is the origin of this bimodality? Q) ¢oazLLxs
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Star formation quenching: why & how? I
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Mechanisms for SF Quenching -- Why?
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o Dry mergers increase the stellar mass of a
galaxy, butleave its color unchanged

van den Bosch etal. (2007)
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o Star Formation Quenching

o Stellar mass (or structure)

¢ SNe feedback/AGN feedback

+ Disk instability / bar / bulge
+ External (environment)

o Tidal/Ram-pressure (stripping of cold gas)
+ Strangulation (stripping of hot gas atmosphere)

¢ Harassment (impulsive encounters with other

satellites)
Halo shock heating
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Mass Quenching

Environment
Quenching

Merging
Quenching
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Peng et al. (2010,ApJ);

Environmental effects may be crucial for
quenching star formation activities in
log(M*/M,) <10.0 galaxies at z< 0.7

For more massive galaxies, quenching
does not show clear dependence on local
galaxy environment (mass quenching).

Pan et al. (2013,ApJ)

Faint Shells Normal Elliptical

Major mergers/interaction between disk galaxies

trigger AGNs (or starburst) and feedback



We are interesting ... How? L rensaixs

¢ How fast does the galaxy SFR have to decline to turn
quiescent (SFH)?

+ How galaxy mass assembly mode depends on stellar mass?

PSF-matched GALEX+SDSS images: a) SDSS gri color image; b) NUV image; (¢) registered SDSS
r-band image, interpolated to the GALEX resolution; (d) convolved with NUV PSF; (e) RGB color
image, generated by NUV (blue), SDSS u band (green) and r band (red) PSF-matched images.
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Cosmic SFH
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Redshift

Madau P, Dickinson M. 2014.

Lookback time (Gyr)

log v (M, year™ Mpc™)

Redshift

The average SFR in galaxies has been
declining since z ~ 2: a fraction of
galaxies quench and become quiescent.

Annu. Rev. Astron. Astrophys. 52:415-86

¢ To discern potential quenching mechanisms, it is critical to constrain
quenching properties, such as quenching time scale and quenching rate

by observations.



How to constrain quenching time scale ? (SRR AELER:
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+ Sample selection criteria: (0.02<z NUV-u v.s. u-r color-color

<0.05, M*>10°M, b/a>0.7 diagram (Schawinski et al. 2014)



Two-phase SFH Lian et al. 2016,ApJ) [(@RLEEETER"
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¢ Investigate both one-phase and two-phase (Tipitial T Tquencn) Star formation
histories (SFHs) based on stellar population synthesis models (BC03).

¢ Two-phase SFH supported by: curved distribution, non-flat density
distribution (drop at NUV-u ~ 1.4)



Quenching time scale
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+ E-folding time of growth stage is taken from Noeske et al. (2007)

¢ Quenching time scale should be within [0.2, 1] Gyr.

¢ The model with t, = 0.5 Gyr best-fits the data.
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How to constrain the quenching rate ? O Fensakxs

¢ Mass function evolution v.s. number  _ % Serermne g e
density profile S :
+ Strength: insensitive to dust extinction g g
and rejuvenated activity; quenching rate ol :
at different epoches PR
¢ Weakness: limited by sample variance L : - - S - - -
and observation accuracy at high log (M / M) log (M / M)
redshift; subject to systematical errors i o g - 95100
when comparing two large surveys ~ | ==
Moustakaset al. 2013) S 1 g 1
< o ' | s
. . . . 00 0z 04 0.5 0.8 s s
¢ Quenching fraction: : iterative 5-step i
process or simple method i}
¢ Quenching fraction: 28% (28%), - — — T |
350 log(M, /M) =[10,10.2] 350 log(M, /M) =[10.2,10.4] 350 log(M, /M) =[10.4,10.6]
35% (31%), and 45% (40%). I B B
¢ Quenching rate (rq = 0.5 Gyr): |
19%/Gyr, 25%/Gyr, and 33%/Gyr. i
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Galaxy Assembly Mode T ¢aasaLxs
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¢ M*,is one of the most fundamental properties
of galaxies.

¢ Assembly mode: inside-out or outside-in

¢ Inside-out : galaxies still made stars on their
outskirts, but no longer in their interiors.

+ Inside-out : the quenching of star formation
seems to have started in the cores of the galaxies
and then spread to the outer parts.




Mass assembly mode

Pan et al. (2015, ApJd)
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How galaxy mass assembly mode depends on
stellar mass M*?

~10,000large (Rq, > 5.”70), face on, low-
redshift galaxies.

Measures of both the integrated and the
central NUV-r color indices, also D4n

D4n > 1.6:

¢ M*<10!'"Mg galaxies have moved to the UV
red sequence

¢ M*>101"SMg: alarge fraction of galaxies
still lie on the UV blue cloud or the GV region.

Main galaxy assembly mode is transiting from
“outside-in” mode to “inside-out” mode at M*
<10 Mg and at M* > 10195 M.
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Gradients in oxygen abundance
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Spectra of > 400 star-forming regions in M33 were
observed by using Hectospec/MMT

Physical parameters, such as electron temperatures,
electron densities, and metallicities.

Inside-out picture of galaxy formation is supported
by the gradients in oxygen abundance of H II regions

Lin et al. (2017, ApJ)
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12 galaxies @ P-MaNGA

Galaxy A
(star-forming)

z=0.034
log M* =10.3
Re=3.16"

log Ho
(sSFR)

D4000
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The cessation of star formation propagates from the center of a galaxy outward

as it moves to the red sequence (inside-out mode): Li et al. (2015, ApJ)



Bulge

Pan et al. (2016,ApJ) . FEAZLL
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To understand how the
quenching of star formation is
linked to galaxy structure.

~ 60001ocal face-on SFGs: the
NUV-r colors inside and
outside Rs, vs. stellar mass M*

M <101%2Msun : (NUV-r)c ~
(NUV-r)o

M > 101%2Msun : the central
NUV—-r becomes much redder
than the outer NUV—r

NUV—r (outer)

NUV—r (central)

91011 9Ill.16llll11lll
log M,/Mg log M,/Mg

a) (NUV-r),y.r as a function of M*,

b) similar to (a), butshown in (NUV-r). . ¢ar-

The large symbols denote the median

NUV-rin that mass bin.

Galaxies with M < 10192 Msun : exhibit similar star formation activity from the
inner region to the R > R;, region. In contrast, a considerable fraction of the M
>1019-2Msun galaxies have a relatively inactive (quenching) bulge component.
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A similar trend at z~2.2 Q) FOAzLLxS
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Evidence for mature bulges and an inside-out quenching phase 3 billion

years after the Big Bang Tacchella et al. (Science 2015;348:314317)
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Quenching picture of massive galaxies ) FEBZLL%Z

Redshift zZ~2 z~0
tuniverse 3.3 Gyr 13.7 Gyr
: formation of high central quenching of SFR i y
stnrtfc::'m::?? : stellar mass densities in the center, outskirts quen.chlzg proceeds e:rlty-P i T;:: cg:led
el through ‘compaction’ still forming stars helon ot 2 o el

Fig. 4. Proposed sketch of the evolution of massive galaxies. Our results suggest a picture in
which the total stellar mass and bulge mass grow synchronously in z~2 main sequence galaxies,
and quenching is concurrent with their total masses and central densities approaching the highest

values observed in massive spheroids in today’s universe. Tacchella et al. (2015, Science)
° 9

A considerable fraction of quenched mass is hidden in massive
SFGs . The presence of old bulges in massive galaxies naturally
explains the flattened slope of the SFR—-M* relation seen at the

massive end. How to quantify it ?




Turnover in MS Q) ¥EAZLLxS
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8 9 10 11 12  Why the star formation main
log(M/M,,) sequence has a shallow slope at
Whitaker et al. (2014): the slope of SFG MS is high masses?
dependent on stellar mass, in a broken power- a massive disk galaxy can harbor
law form.

a bulge (quiescent) component



Toy model Q) FOAzLLxS

f Science and Technology of China

¢ Scientific goal: to quantify quenched mass portion of SFGs.

¢ The model: a SFG is composed by a star formation component
+ a quenched component, where the SF component always has
aSFfvillh‘l,O.

" U
a) Observed SFR-M plane 4 b) Model k
M, (Mse , SFR)
l az SFmaim | NS _____ SF main
sequence ’ sequence
o Q 2 \
» 24 5 i (M., SFR)
o -
3 S
Quenched
\MU \Mc

Log Stellar Mass Log Stellar Mass



Log SFR

Develop a toy model to reconcile the MS

' b) Model

(Msg , SFR)

SF main

(M., SFR)

sequence
'
'
'
|
|
|
|

Log Stellar Mass

o4, 0, and M, can be
determined from the MS

While only agr and M, are
free parameters.

>

slopes in both the low- and the high-mass regimes.

GMS, My < M,

<
SFR(My) = N
CoMy?, My > My

SFR (Msg) = CseMg;s*, SFR(Mp) = CoM,,°

Cq < Csp.  Msp = fop Mx

SFR (M) ~ SFR(Msg) = Csg fSC;SF MSF.
Then at M,
GM;" = Csp M.
Similarly, at My = My
GM" = G M.
Combining Equations (1), (4), (5), and (6),

« YQE— O a1—«
{SE/M(?SF ﬂlM*l SF, MO

SF —

<
agF M(?SF_QIMI?I_QZMQZ_Q’SF M* 2 Mk

My < My

(1)

(2)
(3)

4)

)

(6)

(7)

The quenched mass portion fo is then easily derived as fo

- 1_»fSF'



0.5

a,=0.95, a2=0.5
log M, =10.2

log

10

M*/MO

log M,/Mg

Left:
dependence of
the o — M.
relation on agp.

Right:
dependence of
the f, relation
on M,.

M. > M, : the f,—M. relation is not very sensitive to both M, and ogp, the f
estimation is robust at high masses as long as the MS parameters are well
determined.

M. < My : however, f, is strongly dependent on the choice of the free
parameters, this method may be no longer valid in the low-mass regime.
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Evolution (z) of fo— M. ($EAELLKE

Whitaker et al. (2014)

z=0.75 -
a1(z) = 0.95 £+ 0.05 + (0.02 & 0.04)z

a(z) = 0.03 £0.10 + (0.31 £ 0.06)z. .=, |

¢ Thef, of a Milky Way like
SFG (with M*~10'""Msun) is
around 30% —40% atz ~ 2.25, =

whereas it rapidly rises up to
70% —80% atz ~ 0.75.

¢ Themassive SFGs havebeen
dominated by quenched mass - |
since very high redshifts.

0.5

¢ Even atz =2.25, the
most massive SFGs have
already contained a high
fraction of quenched mass.

log M,/Mg

Pan et al. (2017, ApJ)
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¢ The distribution of galaxies in color-color diagram and the number density
profile strongly support two-phase evolution scenario of galaxies, and the
time scale of the quenching stage is within [0.2, 1] Gyr.

¢ The central regions of less massive SFGs are comparably active to the outer
regions (outside-in). In contrast, the bulge of a portion of massive galaxies
has been quenched (inside-out).

¢ The presence of old bulges in massive galaxies naturally explains the
flattened slope of the SFR—M* relation seen at the massive end.

THANKS!



